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h i g h l i g h t s

• A nonparametric density estimator based on simplified vine copulas is proposed.
• The convergence rate of the proposed estimator is independent of dimension.
• Simulations illustrate a huge gain in accuracy if the model assumption is true.
• When it is violated, the estimator is still favorable if the dimension is not small.
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a b s t r a c t

Practical applications of nonparametric density estimators in more than three dimensions
suffer a great deal from the well-known curse of dimensionality: convergence slows
down as dimension increases. We show that one can evade the curse of dimensionality
by assuming a simplified vine copula model for the dependence between variables. We
formulate a general nonparametric estimator for such a model and show under high-level
assumptions that the speed of convergence is independent of dimension. We further
discuss a particular implementation for which we validate the high-level assumptions and
establish asymptotic normality. Simulation experiments illustrate a large gain in finite
sample performance when the simplifying assumption is at least approximately true. But
even when it is severely violated, the vine copula based approach proves advantageous
as soon as more than a few variables are involved. Lastly, we give an application of the
estimator to a classification problem from astrophysics.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Density estimation is one of the most important problems in nonparametric statistics. Most commonly, nonparametric
density estimators are used for exploratory data analysis, but find many further applications in fields such as astrophysics,
forensics, or biology [7,4,32]. Many of these applications involve the estimation of multivariate densities. However, most
applications so far focus on two- or three-dimensional problems. Furthermore, the persistent interest amongst practitioners
is contrasted by a falling tide of methodological contributions in the last two decades.

A probable reason is the prevalence of the curse of dimensionality: due to sparseness of the data, nonparametric density
estimators converge more slowly to the true density as dimension increases. Put differently, the number of observations
required for sufficiently accurate estimates grows excessively with the dimension. As a result, there is very little benefit
from the ever-growing sample sizes in modern data. Section 7.2 in [44] illustrates this phenomenon for a kernel density
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estimator when the standard Gaussian is the target density: to achieve an accuracy comparable to n = 50 observations in
one dimension, more than n = 106 observations are required in ten dimensions.

In general, this issue cannot be solved: Stone [48] proved that any estimatorf that is consistent for the class of p times
continuously differentiable d-dimensional density functions converges at a rate of at most n−p/(2p+d). More precisely,f (x) = f (x)+ Op(n−r),

for all densities f of this class and some r > 0, implies that r ≤ p/(2p+d). The curse of dimensionalitymanifests itself in the
d in the denominator. It implies that the optimal convergence rate necessarily decreases in higher dimensions. Thus, to evade
the curse of dimensionality, all we can hope for is to find subclasses of densities for which the optimal convergence rate does
not depend on d. One such subclass is the collection of density functions corresponding to independent variables, which can
be estimated as a simple product of univariate density estimates. But the independence assumption is very restrictive. We
also want the subclass to be rich and flexible. We will show that simplified vine densities are such a class and provide a
useful approximation even when the simplifying assumption is severely violated.

1.1. Nonparametric density estimation based on simplified vine copulas

We introduce a nonparametric density estimator whose convergence speed is independent of the dimension. The
estimator is build on the foundation of a simplified vine copulamodel, where the joint density is decomposed into a product
of marginal densities and bivariate copula densities, see, e.g., [12] and Section 3.9 in [29].

First, we separate themarginal densities and the copula density (which captures the dependence between variables). Let
(X1, . . . , Xd) ∈ Rd be a random vector with joint distribution F and marginal distributions F1, . . . , Fd. Provided densities
exist, Sklar’s Theorem [45] allows us to rewrite the joint density f as the product of a copula density c and the marginal
densities f1, . . . , fd: for all x ∈ Rd,

f (x) = c

F1(x1), . . . , Fd(xd)


× f1(x1)× · · · × fd(xd),

where c is the density of the random vector

F1(X1), . . . , Fd(Xd)


∈ [0, 1]d. In order to estimate the joint density f , we can

therefore obtain estimates of the marginal densities f1, . . . , fd and the copula density c separately, and then plug them into
the above formula. With respect to the curse of dimensionality, nothing is gained (so far) since estimation of the copula
density is still a d-dimensional problem.

A crucial insight is that any d-dimensional copula density can be decomposed into a product of d(d − 1)/2 bivariate
(conditional) copula densities [5]. Equivalently, one can build arbitrary d-dimensional copula densities by using d(d − 1)/2
building blocks (so-called pair-copulas). Following this idea, the flexible class of vine copula models – also known as
pair-copula-constructions (PCCs) – were introduced in [1] and have seen rapidly increasing interest in recent years. For
instance, a three-dimensional joint density can be decomposed as

f (x1, x2, x3) = c1,2

F1(x1), F2(x2)


× c2,3


F2(x2), F3(x3)


× c1,3;2


F1|2(x1|x2), F3|2(x3|x2); x2


× f1(x1)× f2(x2)× f3(x3),

where c1,3;2 is the joint density corresponding to the conditional random vector

F1|2(X1|X2), F3|2(X3|X2)

X2 = x2. Note
that the copula of the vector depends on the value x2 of the conditioning variable X2. To reduce the complexity of the
model, it is usually assumed that the influence of the conditioning variable on the copula can be ignored. In this case, the
conditional density c1,3;2 collapses to an unconditional – and most importantly, two-dimensional – object, and one speaks
of the simplifying assumption or a simplified vine copula model/PCC. For general dimension d, a similar decomposition into
the product of d marginal densities and d(d − 1)/2 pair-copula densities holds.

Some copula classes where the simplifying assumption is satisfied are given in [47]. An important special case is
the Gaussian copula. It is the dependence structure underlying a multivariate Gaussian distribution and can be fully
characterized by d(d − 1)/2 partial correlations. Note that under a multivariate Gaussian model, conditional correlations
and partial correlations coincide. This property is in direct correspondence to the simplifying assumption which states that
all conditional copulas collapse to partial copulas. When the Gaussian copula is represented as a vine copula, it consists of
d(d−1)/2 Gaussian pair-copulas where the copula parameter of each pair corresponds to the associated partial correlation.
In a general simplified vine copulamodel,we replace eachGaussianpair-copula by an arbitrary bivariate copula. Suchmodels
are extremely flexible and encompass a wide range of dependence structures. The class of simplified vine distributions is
even more flexible, because it allows to couple a simplified vine copula model with arbitrary marginal distributions.

Under the simplifying assumption, a d-dimensional copula density can be decomposed into d(d − 1)/2 unconditional
bivariate densities. Consequently, the estimation of a d-dimensional copula density can be subdivided into the estimation of
d(d − 1)/2 two-dimensional copula densities. Intuitively, we expect that the convergence rate of such an estimator will be
equal to the rate of a two-dimensional estimator and, thus, there is no curse of dimensionality. This is formally established
by our main result: Theorem 1.

Nonparametric estimation of simplified vine copula densities has beendiscussed earlier using kernels [34] and smoothing
splines [30]. However, both contributions lack an analysis of the asymptotic behavior of the estimators. We treat the more
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