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a b s t r a c t

We derive central limit theorems for the Wasserstein distance between the empirical
distributions of Gaussian samples. The cases are distinguishedwhether the underlying laws
are the same or different. Results are based on the (quadratic) Fréchet differentiability
of the Wasserstein distance in the gaussian case. Extensions to elliptically symmetric
distributions are discussed as well as several applications such as bootstrap and statistical
testing.
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1. Introduction

Let P,Q be in M1(Rd), the probability measures on Rd. Consider πi : Rd
× Rd

→ R, x = (x1, x2) → xi, i = 1, 2, the
projections on the first or the second d-dimensional vector, and define

Π(P,Q) = {µ ∈ M1(Rd
× Rd) : µ ◦ π−1

1 = P, µ ◦ π−1
2 = Q}

as the set of probability measures on Rd
× Rd with marginals P and Q. Then for p ≥ 1 we define the p-Wasserstein distance

as

Wp(P,Q) := inf
µ∈Π(P,Q)


R2d

∥x − y∥p µ(dx, dy)
1/p

. (1)

There is a variety of interpretations and equivalent definitions of Wp, for example as a mass transport problem; we refer the
reader for extensive overviews to Villani [46] and Rachev and Rüschendorf [36].
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In this paper we are concerned with the statistical task of estimating Wp(P,Q) from given data X1, . . . , Xn ∼ P i.i.d. (and
possibly also from data Y1, . . . , Ym ∼ Q i.i.d.) and with the investigation of certain characteristics of this estimate which are
relevant for inferential purposes. Replacing P by the empirical measure Pn associated with X1, . . . , Xn yields the empirical
Wasserstein distance Wp,n := Wp(Pn,Q) which provides a natural estimate of Wp(P,Q) for a given Q. Similarly, defineWp,n,m := Wp(Pn,Qm) in the two sample case. For inferential purposes (e.g., testing or confidence intervals for Wp(P,Q)) it
is of particular relevance to investigate the (asymptotic) distribution of the empirical Wasserstein distance.

This is meanwhile well understood for measures P,Q on the real line R as in this case an explicit representation of the
Wasserstein distance (and its empirical counterpart) exists (see, e.g., [22,28,30,43,32,33])

Wp
p (P,Q) =


[0,1]

|F−1(t)− G−1(t)|p dt. (2)

Here, F(x) = P((−∞, x]) and G(x) = Q((−∞, x]) for x ∈ R denote the c.d.f.s of P and Q, respectively, and F−1 and G−1

its inverse quantile functions. Now, Wp,n is defined as in (2) with F−1 replaced by the empirical quantile function F−1
n , and

the representation (2) can be used to derive limit theorems based on the underlying quantile process
√
n(F−1

n − F−1). These
results require a scaling rate (an)n∈N such that the laws

an
Wp

p (Pn,Q)− Wp
p (P,Q)+ bn


, as n → ∞ (3)

(for some centering sequence (bn)n∈N) converge weakly to a (non-degenerate) limit distribution. Depending on whether
F = G as well as on the tail behavior of the distributions F and Gwe find ourselves in different asymptotic regimes. Roughly
speaking, when F = G (i.e., P = Q,Wp(P,Q) = 0), an = n is the proper scaling rate, i.e., the limit is of second order and given
by a weighted sum of χ2 laws (see e.g. [6,7]). In general, bn depends on the tail behavior of F . In contrast, when F ≠ G, i.e.,
W

p
p (P,Q) > 0 for an =

√
n, bn = 0 the limit is of first order and

√
n(Wp(Pn,Q) − Wp(P,Q)) is asymptotically normal

(see [34,23]) under appropriate tail conditions. Various applications of these and related distributional results, e.g., for
trimmed versions of theWasserstein distance, include the comparison of distributions and goodness of fit testing [34,3,5,24],
template registration (Section 4 in [11,1]), bioequivalence testing [23], atmospheric research [48], or large scale microscopy
imaging [38].

In contrast to the real line (d = 1), up to now limiting results as in (3) remain elusive forRd, d ≥ 2. However, see [2,18] for
almost sure limit results and [21] for moment bounds on Wp,n. Already the planar case d = 2 is remarkably challenging [2].
One difficulty is that no simple characterization as in (2) via the (empirical) c.d.f’s exists anymore. In particular, the couplings
for which the infimum in (1) is attained are much more involved, see, e.g., [31,37]. We will come back to this in the context
of our subsequent results later on.

In this article we aim to shed some light on the case d ≥ 2 by further restricting the possible measures P,Q to the
Gaussians (and more generally to elliptical distributions). Here, a well known explicit representation of Wp(P,Q) can be
used (see, e.g., [19,25,35])which allows one to obtain explicit limit theorems again. TheGaussian case is of particular interest
as it provides, as shown in [25], a universal lower bound for any pair (P,Q) having the same moments (expectation and
covariance) as the Gaussian law, see also [13].
Limit laws for the Gaussian Wasserstein distance. More specifically, from now on let the laws P,Q ∈ M1(Rd) be in the class
of d-variate normals, i.e.

P ∼ N (µ,Σ) and Q ∼ N (ν,Ξ) for some µ, ν ∈ Rd, Σ,Ξ ∈ S+(Rd), (4)

the symmetric, positive definite, d-dimensional matrices. From now on we will also restrict to p = 2. In this case the
Wasserstein distance between N (µ,Σ) and N (ν,Ξ) is computed as (see [19,35,27])

GW := W2
2 (P,Q) = ∥µ− ν∥2

+ tr(Σ)+ tr(Ξ)− 2 tr

Σ1/2ΞΣ1/21/2 . (5)

Here, tr refers to the trace of a matrix and its square root is defined in the usual spectral way. The norm ∥ · ∥ is the Euclidean
norm with corresponding scalar product denoted by ⟨·, ·⟩. Now, if we replace P with the empirical measure Pn and read µ
and Σ as a functional of P, we obtain the empirical Wasserstein estimator GWn restricted to the d-dimensional Gaussian
measures asGWn = GWn(X1, . . . , Xn,Q)

:= W2
2


N (µ̂n, Σ̂n),N (ν,Ξ)


= ∥µ̂− ν∥2

+ tr(Σ̂)+ tr(Ξ)− 2 tr

Σ̂1/2ΞΣ̂1/2

1/2
. (6)

Similar to the case of the general empirical Wasserstein distance for d = 1 we find in the following that the asymptotic
behavior differs whether P = Q, i.e., µ = ν and Σ = Ξ or P ≠ Q. Let us start with the latter case which turns out to be
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