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a b s t r a c t

Thiswork is concernedwith the study of the adaptivity properties of nonparametric regres-
sion estimators over the d-dimensional sphere within the global thresholding framework.
The estimators are constructed by means of a form of spherical wavelets, the so-called
needlets, which enjoy strong concentration properties in both harmonic and real domains.
The author establishes the convergence rates of the Lp-risks of these estimators, focusing
on their minimax properties and proving their optimality over a scale of nonparametric
regularity function spaces, namely, the Besov spaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to establish adaptivity for the Lp-risk of regression function estimators in the nonparametric
setting over the d-dimensional sphere Sd. The optimality of the Lp risk is established by means of global thresholding
techniques and spherical wavelets known as needlets.

Let (X1, Y1), . . . , (Xn, Yn) be independent pairs of random variables such that, for each i ∈ {1, . . . , n}, Xi ∈ Sd and Yi ∈ R.
The randomvariablesX1, . . . , Xn are assumed to bemutually independent anduniformly distributed locations on the sphere.
It is further assumed that, for each i ∈ {1, . . . , n},

Yi = f (Xi)+ εi, (1)

where f : Sd
→ R is an unknown bounded function, i.e., there existsM > 0 such that

sup
x∈Sd

|f (x)| ≤ M < ∞. (2)

Moreover, the random variables ϵ1, . . . , ϵn in Eq. (1) are assumed to be mutually independent and identically distributed
with zeromean. Roughly speaking, they can be viewed as the observational errors and inwhat follows, theywill be assumed
to be sub-Gaussian.

In this paper, we study the properties of nonlinear global hard thresholding estimators, in order to establish the optimal
rates of convergence of Lp-risks for functions belonging to the so-called Besov spaces.
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1.1. An overview of the literature

In recent years, the issue of minimax estimation in nonparametric settings has received considerable attention in the
statistical inference literature. The seminal contribution in this area is due to Donoho et al. [7]. In this paper, the authors
provide nonlinear wavelet estimators for density functions on R, lying over a wide nonparametric regularity function class,
which attain optimal rates of convergence up to a logarithmic factor. Following this work, the interaction between wavelet
systems and nonparametric function estimation has led to a considerable amount of developments, mainly in the standard
Euclidean framework; see, e.g., [3,5,24,26–28,30] and the textbooks [22,44] for further details and discussions.

More recently, thresholding methods have been applied to broader settings. In particular, nonparametric estimation
results have been achieved on Sd by using a second generation wavelet system, namely, the spherical needlets. Needlets
were introduced by Narcowich et al. [39,40], while their stochastic properties dealing with various applications to spherical
random fields were examined in [2,6,34–36]. Needlet-like constructions were also established over more general manifolds
by Geller and Mayeli [18–21], Kerkyacharian et al. [25] and Pesenson [41] among others, and over spin fiber bundles by
Geller and Marinucci [16,17].

In the nonparametric setting, needlets have found various applications on directional statistics. Baldi et al. [1] established
minimax rates of convergence for the Lp-risk of nonlinear needlet density estimators within the hard local thresholding
paradigm, while analogous results concerning regression function estimation were established by Monnier [38]. The
block thresholding framework was investigated in Durastanti [9]. Furthermore, the adaptivity of nonparametric regression
estimators of spin function was studied in Durastanti et al. [10]. In this case, the regression function takes as its values
algebraical curves lying on the tangent plane for each point on S2 and the wavelets used are the so-called spin (pure and
mixed) needlets; see Geller and Marinucci [16,17].

The asymptotic properties of other estimators for spherical data, not concerning the needlet framework, were investi-
gated by Kim andKoo [31–33], while needlet-like nearly-tight frameswere used inDurastanti [8] to establish the asymptotic
properties of density function estimators on the circle. Finally, in Gautier and Le Pennec [15], the adaptive estimation by
needlet thresholding was introduced in the nonparametric random coefficients binary choicemodel. Regarding the applica-
tions of these methods in practical scenarios, see, e.g., [13,14,23], where they were fruitfully applied to some astrophysical
problems, concerning, for instance, high-energy cosmic rays and Gamma rays.

1.2. Main results

Consider the regression model given in Eq. (1) and let {ψj,k : j ≥ 0, k = 1, . . . , Kj} be the set of d-dimensional spherical
needlets. Roughly speaking, j and Kj denote the resolution level j and the cardinality of needlets at the resolution level j,
respectively. The regression function f can be rewritten in terms of its needlet expansion. Namely, for all x ∈ Sd, one has

f (x) =


j≥0

Kj
k=1

βj,kψj,k (x) ,

where {βj,k : j ≥ 0, k = 1, . . . , Kj} is the set of needlet coefficients.
For each j ≥ 0 and k ∈ {1, . . . , Kj}, a natural unbiased estimator for βj,k is given by the corresponding empirical needlet

coefficient, viz.

βj,k =
1
n

n
i=1

Yiψj,k (Xi) ; (3)

see, e.g., Baldi et al. [1] and Härdle et al. [22]. Therefore, the global thresholding needlet estimator of f is given, for each
x ∈ Sd, by

f̂n (x) =

Jn
j=0

τj

KJn
k=1

βj,kψj,k (x) , (4)

where τj is a nonlinear threshold function comparing the given j-dependent statistic Θj(p), built on a subsample of p < n
observations, to a threshold based on the observational sample size. If Θj(p) is above the threshold, thewhole j-level is kept;
otherwise it is discarded.

Loosely speaking, this procedure allows one to delete the coefficients corresponding to a resolution level j whose
contribution to the reconstruction of the regression function f is not clearly distinguishable from the noise. Following
Kerkyacharian et al. [30], we consider the so-called hard thresholding framework, defined as

τj = τj(p) = 1{Θ̂j(p) ≥ Bdjn−p/2
},

where p ∈ N is even. Further details regarding the statistic Θ̂j(p) will be discussed in Section 3.4, where the choice of the
threshold Bdjn−p/2 will also be motivated.
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