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a b s t r a c t

Modeling the covariance matrix of multivariate longitudinal data is more challenging as
compared to its univariate counterpart due to the presence of correlations amongmultiple
responses. The modified Cholesky block decomposition reduces the task of covariance
modeling into parsimonious modeling of its two matrix factors: the regression coefficient
matrices and the innovation covariance matrices. These parameters are statistically
interpretable, however ensuring positive-definiteness of several (innovation) covariance
matrices presents itself as a new challenge. We address this problem using a subclass of
Anderson’s (1973) linear covariance models and model several covariance matrices using
linear combinations of knownpositive-definite basismatriceswith unknownnon-negative
scalar coefficients. A novelty of this approach is that positive-definiteness is guaranteed
by construction; it removes a drawback of Anderson’s model and hence makes linear
covariancemodels more realistic and viable in practice. Maximum likelihood estimates are
computed using a simple iterative majorization–minimization algorithm. The estimators
are shown to be asymptotically normal and consistent. Simulation and a data example
illustrate the applicability of the proposed method in providing good models for the
covariance structure of a multivariate longitudinal data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate longitudinal studies involve two or more outcomes of interest measured repeatedly at two or more
time points. These studies are common in clinical trials and biological research. The covariance matrix for such data
plays a prominent role in analysis as it serves as a measure of temporal and cross-sectional dependence. Compared to
univariate longitudinal data, developing a statistically interpretable and computationally efficient covariancemodel is more
challenging in themultivariate case. This is because of the positive-definiteness constraint on the covariancematrix and high-
dimensionality where now the number of parameters grows quadratically with the number of outcomes and time points.
Graphical tools to visualize dependence patterns may also involve a multitude of graphs. Therefore, few, if any, graphical
methods have been explored for multivariate longitudinal data.

Considerable research has been carried out to address covariance modeling of multivariate longitudinal data. These
include Kronecker product covariance structures [19,6,18] and random-effects models [24,3,4]. Kronecker product

∗ Corresponding author.
E-mail address: pkohli@conncoll.edu (P. Kohli).

http://dx.doi.org/10.1016/j.jmva.2015.11.014
0047-259X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2015.11.014
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2015.11.014&domain=pdf
mailto:pkohli@conncoll.edu
http://dx.doi.org/10.1016/j.jmva.2015.11.014


88 P. Kohli et al. / Journal of Multivariate Analysis 145 (2016) 87–100

structures provide a parsimonious model as the product of the marginal sources of correlations, but their appropriateness
in any application depends on whether the underlying conditional independence assumption is tenable. Random-effects
models use multivariate mixed models with random coefficients and select the covariance structures from candidate sets
like compound symmetry (CS) and autoregressive (AR) models. This approach could lead to model misspecification if the
selected covariance structure is far from the truth [31]. For excellent reviews of the current literature from the perspectives
of random-effects models and dimension reduction, see [2,28].

For univariate longitudinal data, a statistically interpretable and unconstrained reparameterization of its covariance
matrix6 is achieved using its modified Cholesky decomposition: T6T⊤ = D, where T is a unit lower triangular matrix with
ones on themain diagonal andD is a diagonalmatrix with positive diagonal elements. The below-diagonal elements of T are
the unconstrained regression coefficientswhen ameasurement is regressed on its predecessors and the diagonal elements of
D are the corresponding innovation (regression residual) variances. The non-redundant and unconstrained entries of T and
lnD are thenmodeled parsimoniously using covariates [22,21]. This idea has been extended to themultivariate longitudinal
data setting [15,29] by replacing the scalar entries of T and D by J × J block matrices

T =


I 0 0 · · · 0
−821 I 0 · · · 0
−831 −832 I · · · 0
...

...
. . .

. . .
...

−8T1 −8T2 · · · −8T ,T−1 I

 , D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · DT

 . (1)

In this Cholesky block decomposition, the blocks in T are unconstrained, interpretable as regression coefficient matrices
and they are modeled using established methods reviewed in Section 2.2. However, the diagonal blocks D1, . . . ,DT of
D, which represent the cross-sectional dependence among the regression residuals for the J outcomes, are constraint
to be positive-definite. Unlike in the univariate case, a major challenge is finding statistically interpretable and possibly
unconstrained reparameterizations for all Dt ’s simultaneously. To this end, Xu and Mackenzie [29] proposed a log-linear
covariancemodel [7] for the Dt ’s but the ensuing parameters are difficult to estimate and not interpretable [5], except when
Dt ’s are diagonal. Kim and Zimmerman [15] applied the Cholesky decomposition to each Dt , but doing so requires imposing
an a priori (time) order among the multiple outcomes which is unnatural in most practical situations.

To address some of the above challenges, we develop a new model for the covariance structure of multivariate
longitudinal data. Our approach does not require order among the multiple outcomes and guarantees positive-definiteness
of the estimated covariance matrix. It employs various data features to reduce the number of parameters, and motivates a
new graphical tool to visualize the multivariate covariance structure. The key idea is to model each Dt using the enhanced
linear covariance models (LCM):

D±1t = α1M1 + · · · + αtMt , (2)

where theMi’s are known positive-definite matrices and the αi’s are unknown non-negative parameters. These restrictions
guarantee the positive-definiteness of the postulated covariance models. The enhanced LCM differs from the classic LCM
in [1] which only requires the Mi’s to be symmetric matrices and αi’s to be scalars. Ensuring the latter has hampered the
widespread use of the LCM in practice for over four decades as it involves a computationally demanding procedure for
estimating feasible αi’s [25,14,33].

A key issue in LCM is the appropriate choice of Mi’s (covariates), an issue which is also present implicitly in the
approaches of Xu andMackenzie [29] and Kim and Zimmerman [15].We present twomethods for selecting and formulating
reasonable and positive-definiteMi’s. The firstmethod selects theMi’s from a library of known (parametric) covariance basis
matrices referred to as power correlation structures in [31]. The second method formulates Mi’s (nonparametrically) using
the eigenvectors of the sample innovation matrix in the spirit of principal component analysis (PCA) as in [12]. For the sake
of contrasting the challenges ofmodeling the covariance of univariate andmultivariate longitudinal data, we propose a third
method based on extending the notion of univariate regressograms [22] to a multivariate setting. Doing so, unfortunately
leads toMi’s that are not necessarily positive-definite.

Once parametric models for the Cholesky factors (T ,D) of the covariance matrix of the multivariate longitudinal data
are identified, the parameters are estimated using the maximum likelihood estimation. For normally distributed data, we
solve the more difficult problem of maximum likelihood estimation of the αi’s using a maximization–minimization (MM)
procedure [13]. The remainder of this paper is organized as follows. Section 2 describes the development of the modified
Cholesky decomposition paired with LCM models for the innovation covariances. Section 3 develops the MM estimation
procedure and its asymptotic properties, with an emphasis on how the MM procedure reduces the task of maximizing the
likelihood function to minimizing a quadratic function subject to the non-negativity constraint on αi’s in (2). Sections 4
and 5 present numerical results, from Monte Carlo simulations and analysis of data from a bivariate longitudinal study of
poplar tree growth. Section 6 concludes the paper. All proofs and derivations are provided in the Supplementary Material
(see Appendix A).
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