
Journal of Multivariate Analysis 145 (2016) 117–131

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Kriging prediction for manifold-valued random fields
Davide Pigoli a,∗, Alessandra Menafoglio b, Piercesare Secchi b
a Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK
b MOX-Department of Mathematics, Politecnico di Milano, Milan, Italy

a r t i c l e i n f o

Article history:
Received 27 November 2013
Available online 25 December 2015

AMS subject classifications:
62H11
62F30

Keywords:
Non Euclidean data
Residual kriging
Positive definite symmetric matrices

a b s t r a c t

The statistical analysis of data belonging to Riemannianmanifolds is becoming increasingly
important in many applications, such as shape analysis, diffusion tensor imaging and
the analysis of covariance matrices. In many cases, data are spatially distributed but it
is not trivial to take into account spatial dependence in the analysis because of the non
linear geometry of the manifold. This work proposes a solution to the problem of spatial
prediction for manifold valued data, with a particular focus on the case of positive definite
symmetric matrices. Under the hypothesis that the dispersion of the observations on the
manifold is not too large, data can be projected on a suitably chosen tangent space, where
an additive model can be used to describe the relationship between response variable
and covariates. Thus, we generalize classical kriging prediction, dealing with the spatial
dependence in this tangent space, where well established Euclidean methods can be used.
The proposed kriging prediction is applied to the matrix field of covariances between
temperature and precipitation in Quebec, Canada.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This work is part of a line of researchwhich deals with the statistical analysis of data belonging to Riemannianmanifolds.
Studies in this field have beenmotivated bymany applications: for example Shape Analysis (see, e.g., [15]), Diffusion Tensor
Imaging (see [8], and references therein) and estimation of covariance structures [26]. Using the terminology of Object
Oriented Data Analysis [33], in all these applications the atom of the statistical analysis belongs to a Riemannian manifold
and therefore its geometrical properties should be taken into account in the statistical analysis.

We develop here a kriging procedure for Riemannian data. Spatial statistics for complex data has recently receivedmuch
attention within the field of functional data analysis (see [22,6,12,19,17,18]) but the extension to non Euclidean data is even
a greater challenge because they do not belong to a vector space.

Many works have considered the problem of dealing with manifold-valued response variables. Some of them propose
non parametric (see [35], and references therein) or semi-parametric (see [29]) approaches but this implies a lack of
interpretability or the reduction of multivariate predictors to univariate features. In particular, these approaches do not
allow to introduce the spatial information in the prediction procedure.

A different line of research is followed in the present work, along the lines of those who try to extend to manifold-valued
data parametric (generalized) linear models (see, e.g. [9]). We propose a linear regression model for Riemannian data based
on a tangent space approximation. Even though the lattermodel is here developed in view of kriging prediction formanifold
data, itmay be used in general to address parametric regression in the context of Riemannian data, since it allows to consider
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multiple predictors in models with manifold-valued response variables. The central idea of this work consists in using the
local geometry of the manifold to find a data-driven linearization, i.e. looking for the tangent space where the parametric
model provides the best possible fitting for the available data.

The proposed method is illustrated here for the special case of positive definite symmetric matrices and in view of a
meteorological application to covariancematrices. More in general, this approach is valid every time a Hilbert tangent space
and correspondent logarithmic and exponential map can be defined, as we show in Appendix A.

2. Statistical analysis of positive definite symmetric matrices

Positive definite symmetric matrices are an important instance of data belonging to a Riemannian manifold. In this
section, we introduce notation and a few metrics, together with their properties, that we deem useful when dealing with
data that are positive definite symmetric matrices. A broad introduction to the statistical analysis of this kind of data can be
found, e.g., in [25] or [8].

Let PD(p) indicate the Riemannian manifold of positive definite symmetric matrices of dimension p. It is a convex subset
of Rp(p+1)/2 but it is not a linear space: in general, a linear combination of elements of PD(p) does not belong to PD(p).
Moreover, the Euclidean distance in Rp(p+1)/2 is not suitable to compare positive definite symmetric matrices (see [20],
for details). Thus, more appropriate metrics need to be used for statistical analysis. A good choice could be a Riemannian
distance: the shortest path between two points on a manifold, once this has been equipped with a Riemannian metric, as
we illustrate below. A description of the properties of Riemannian manifolds in general, and of PD(p) in particular, can be
found in [21] and references therein.

Let Sym(p) be the space of symmetric matrices of dimension p. The tangent space TΣPD(p) to the manifold of positive
definite symmetric matrices of dimension p in the point Σ ∈ PD(p) can be identified with the space Sym(p), which is linear
and can be equipped with an inner product. A Riemannian metric in PD(p) is then induced by the inner product in Sym(p).
Indeed, the choice of the inner product in the tangent space determines the form of the geodesic (i.e. the shortest path
between two elements on the manifold) and thus the expression of the geodesic distance between two positive definite
symmetric matrices. A possible choice for the Riemannian metric is generated by the scaled Frobenius inner product in
Sym(p), which is defined as ⟨A, B⟩Σ = trace(Σ−

1
2 ATΣ−1BΣ−

1
2 ), where A, B ∈ Sym(p). This choice is very popular for

covariancematrices, because it generates a distance which is invariant under affine transformation of the random variables.
For every pair (Σ, A) ∈ PD(p) × Sym(p), there is a unique geodesic curve g(t) such that

g(0) = Σ,

g ′(0) = A.

When the Riemannian metric is generated by the scaled Frobenius inner product, the expression of the geodesic becomes
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where exp(C) indicates the exponential matrix of C ∈ Sym(p). The exponential map of PD(p) in Σ is defined as the point at
t = 1 of this geodesic:
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Thus, the exponential map takes the geodesic passing through Σ with ‘‘direction’’ A and follows it until t = 1. The
exponential map has an inverse which is called logarithmic map and is defined as

logΣ (P) = Σ
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where log(D) is the logarithmic matrix of D ∈ PD(p). The logarithmic map returns the tangent element A that allows the
corresponding geodesic to reach P at t = 1.

The Riemannian distance between elements P1, P2 ∈ PD(p) is the length of the geodesic connecting P1 and P2, i.e.

dR(P1, P2) = ∥ log(P−1/2
1 P2P

−1/2
1 )∥F =

 p
i=1
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where the ri are the eigenvalues of the matrix P−1
1 P2 and ∥.∥F is the Frobenius norm for matrices, defined as

∥A∥F =


trace(ATA).

This distance is called affine invariant Riemannian metric or trace metric, for instance in [35].
Other distances have been proposed in the literature to compare two positive definite symmetric matrices, both for

computational reasons [25] and for convenience in specific problems [8]. For example, we may consider the Cholesky
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