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a b s t r a c t

A supervised singular value decomposition (SupSVD) model has been developed for su-
pervised dimension reduction where the low rank structure of the data of interest is po-
tentially driven by additional variables measured on the same set of samples. The SupSVD
model can make use of the information in the additional variables to accurately extract
underlying structures that are more interpretable. The model is general and includes the
principal component analysis model and the reduced rank regression model as two ex-
treme cases. The model is formulated in a hierarchical fashion using latent variables, and
a modified expectation–maximization algorithm for parameter estimation is developed,
which is computationally efficient. The asymptotic properties for the estimated parame-
ters are derived. We use comprehensive simulations and a real data example to illustrate
the advantages of the SupSVD model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As high dimensional data become increasingly common, dimension reduction becomes more and more important, since
it is easier to visualize and analyze a low dimensional structure in high dimensional data. The singular value decomposition
(SVD) is a fundamental tool used in multivariate analysis to decompose a high-dimensional data matrix into a sum of unit-
rank layers ordered by importance. The first few layers, which often capture the majority of the variation, act as a low rank
approximation or dimension reduction of the original data.

However, one drawback of SVD is that it only makes use of a single data set, and by default the resulting dimension
reduction cannot incorporate any additional information thatmay be relevant.Whenmultiple related data sets are available
on the same set of samples, sharing information across data sets may lead to recovery of a low rank structure that is more
interpretable. Several approaches have been developed for analyzing multiple data sets. For example, [22] develops an
integrative approach to study joint and individual variations simultaneously; [2] develops a supervised principal component
regression method to select predictors and do prediction. In this paper, we propose a supervised SVD (SupSVD) model to
achieve dimension reduction that incorporates auxiliary information. We assume that the auxiliary data set, which we refer
to as the supervision, is a potential driving factor for the low rank structure of the primary data of interest.

The assumption is reasonable in many applications. For example, some genetic studies collect both gene expression
and single-nucleotide polymorphism (SNP) data on the same group of subjects. One interesting topic is to investigate
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intrinsic patterns of the expression data. Biologically, expression of some genes is regulated by SNPs known as expression
quantitative trait loci (eQTL). In other words, SNPs indeed drive underlying structure in the gene expression data which one
can potentially get a better understanding of if we take advantage of the supervision (SNP) data.

We now introduce the SupSVDmodel using matrix notation. Let X denote the data matrix of primary interest which has
n rows (or samples) and p columns (or variables). Let Y denote the supervision data matrix which has n rows (matched with
X) and q columns. We assume that the intrinsic information in X is low dimensional with rank r(r ≤ min(n, p)), and is
possibly driven by Y, in a linear fashion. In matrix form, the SupSVD model can be expressed as follows:

X = UVT
+ E,

U = YB+ F, (1)

where U is an n× r latent score matrix, V is a p× r full-rank loading matrix, and B is a q× r coefficient matrix, with F and
E being n× r and n× p error matrices, respectively.

Overall, the SupSVDmodel captures situations inwhichX has an intrinsic low rank structure and the structure is partially
affected by Y. The first equation in (1) is motivated by the additive-multiplicative low-rank approximationmodel for SVD, as
in [12,27]. It indicates that the observed datamatrixX consists of the low rank structureUVT plusmeasurement errors E. We
use amultivariate linear regressionmodel to capture the potential supervising effect ofY on the scorematrixU. In particular,
the matrix F captures information in U that cannot be explained by Y. We note that very recently Fan et al. [13] proposed
a projected principal component analysis (PCA) method that generalizes the second equation of (1) to a semi-parametric
model.

Compared with the SVD, the SupSVD model incorporates the auxiliary information in Y. The potential advantages of
SupSVD over SVD are two-fold. First, using additional informationmay help reveal interesting patterns thatmight otherwise
be undiscovered. Second, the low rank structure recovered by the SupSVD model might have superior interpretability.
Evidence can be found in the simulated examples in the Supplement, Section Appendix F. Overall we find that SupSVD
performs favorably when the supervision information is indeed a driving factor of low rank data. When auxiliary data are
irrelevant, for example in Case 2 of Section 5.1.1, SupSVD automatically adapts to the situation and performs as well as SVD.

There is a rich literature on dimension reduction of a datamatrixX in the presence of auxiliary informationY, for example
sufficient dimension reduction [9], supervised principal components [2], and principal fitted components [5,6]. Moreover,
reduced rank regression (RRR) [19,25] can also be viewed as a dimension reduction approach for X if we regress X on Y. The
focus of most existing methods is to find a dimension reduced version of X that keeps all the information about Y. This is
different from the scope of the current paper. Here our primary goal is to identify low rank structure ofX, whether or not the
structure is related to the auxiliary information Y. The auxiliary information Y offers guidance for the dimension reduction
of X. To the best of our knowledge, our work is the first to address this topic.

The rest of the paper is organized as follows. In Section 2, we give more details of the SupSVD model, and explain
its connections with existing models. In Section 3, we propose a modified version of the expectation–maximization (EM)
algorithm for parameter estimation. The asymptotic properties of the estimates are discussed in Section 4. In Section 5, we
compare different methods using extensive simulations and apply SupSVD to a real data example.We conclude in Section 6,
with a brief discussion of potential extensions of our framework to functional data analysis. Proofs, technical details, and
additional numerical examples can be found in supplemental materials.

2. The SupSVD model

In this section, we describe the SupSVD method in detail. Section 2.1 gives an equivalent formulation of the model, and
discusses identifiability conditions. Section 2.2 establishes connections of the proposedmodel with some existing methods.

2.1. An equivalent form of the model

In Model (1), if we substitute the latent matrix U in the first equation with the second equation, we get an equivalent
form for the SupSVD model as:

X = YBVT
+ FVT

+ E. (2)

Without loss of generality,we assume that bothX andY are column-centered; hence, themodel does not have intercepts. The
randommatrices E and F are assumed independent. Each entry of the errormatrix E is independently identically distributed
(i.i.d.) with mean zero and variance σ 2

e . This follows the signal-plus-noise model for matrix reconstruction, cf. [27], as well
as the r-component spiked covariancemodel for PCA, cf. [20,24]. Each row of F is i.i.d. withmean zero and covariancematrix
6f, which is an unknown r × r positive definite matrix.

Furthermore, Model (2) can be viewed as a special setup of a multivariate linear regression model

X = Yβ + ε

where the coefficient matrix β is BVT of rank min(r, q), and the random noise matrix ε is FVT
+ E. The rows of the noise

matrix ε are i.i.d. with covariance 6 equal to V6fVT
+ σ 2

e Ip where Ip is the p× p identity matrix.
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