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a b s t r a c t

According to Kendall (1989), in shape theory, The idea is to filter out effects resulting from
translations, changes of scale and rotations and to declare that shape is ‘‘what is left’’.While this
statement applies in principle to classical shape theory based on landmarks, the basic idea
remains also when other approaches are used. For example, we might consider, for every
shape, a suitable associated function which, to a large extent, could be used to characterize
the shape. This finally leads to identify the shapes with the elements of a quotient space of
sets in such a way that all the sets in the same equivalence class share the same identifying
function. In this paper, we explore the use of the interpoint distance distribution (i.e. the
distribution of the distance between two independent uniform points) for this purpose.
This idea has been previously proposed by other authors [e.g., Osada et al. (2002), Bonetti
and Pagano (2005)].We aim at providing some additionalmathematical support for the use
of interpoint distances in this context. In particular, we show the Lipschitz continuity of the
transformation taking every shape to its corresponding interpoint distance distribution.
Also, we obtain a partial identifiability result showing that, under some geometrical
restrictions, shapes with different planar area must have different interpoint distance
distributions. Finally, we address practical aspects including a real data example on shape
classification in marine biology.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned here with the problem of classifying shapes, where, in informal terms, a shape is the family of all
plane figures that can be obtained from a basic template figure (e.g., a square) by applying isometry transformations (rigid
movements+ symmetries) togetherwith changes of scale. Also,wewould like to include all the ‘‘deformed versions’’ (within
some limits) of these basic elements, subject again to isometry transformations and/or scale changes. So, to mention just a
very simple example, one could think that we want to automatically discriminate between two capital letters, say ‘‘B’’ and
‘‘D’’, manually drawn with a thick line marker, whatever their size or their orientation.

In marine biology, one might be interested on classifying fish species using shape analysis techniques. In some cases
the basis for the recognition method is the fish image itself; see Storbeck and Daan [46]. Other researches have used the
so-called otoliths, small pieces present in the inner ear of the fish, which can be considered as ‘‘microfossils’’ whose shapes
are useful in species recognition, among other applications; see Lombarte et al. [36]. In Section 5 we will use this otolith
example as an illustration for the methodology we propose.
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Whatever the practical problem at hand, we need to define, in precise mathematical terms, what we mean for ‘‘shapes’’
in our setting. Then we will be ready to use the statistical methods for classification, either supervised (discrimination) or
unsupervised (clustering) from the available dataset of shapes. In the example of Section 5 we will focus on clustering but
discrimination methods could be considered as well.

The classical theory of shape analysis is largely based on the use of ‘‘landmarks’’ (i.e., finite vectors of coordinates
characterizing the shapes). It was developed, to a large extent, by D. Kendall who expressively referred to shape analysis
studies in the following terms: The idea is to filter out effects resulting from translations, changes of scale and rotations and to
declare that shape is ‘‘what is left’’; see Kendall [29]. A general perspective of this theory can be found in Kendall [29], Kendall
et al. [30] or Kendall and Le [31].

We should mention however that other, less general, notions of shapes have been proposed. As Kent [33] points out,
‘‘... statistical models for shapes may be based on underlying models for the landmarks themselves, or they may be constructed
directly within shape space. In some special cases specialized models may be constructed’’. Our approach here could be
understood as one of these specialized models: roughly speaking, we propose to identify a shape with the corresponding
interpoint distance distribution, that is, the distribution of the distance (normalized to 1) between two randomly chosen
points in the figure.

Related literature
In fact, the idea of using the interpoint distance distribution to identify the shapes has been previously proposed by

other authors, with different applications in mind. For example, the very much cited paper by Osada et al. [43] explores the
practical aspects of using the interpoint distance in the problem of discriminating shapes in image analysis. As these authors
point out, ‘‘The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability
distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence,
or model fitting. We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance
between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus
airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations,
simplifications, andmodel degeneracies’’. See also Bonetti and Pagano [7] for a different use of interpoint distance distributions
in the context of medical research.

In Kent [32] interpoint distances (between landmarks) are used, via multi-dimensional scaling, in shape analysis. Our
approach here is somewhat different as it avoids the use of landmarks at the expense of some loss in generality.

Let us finally mention that the use of interpoint distance distributions entails the precise definition of a corresponding,
suitable ‘‘space of shapes’’; see Section 2, where the whole approach makes sense. Other related shape spaces can be found
in the literature, in particular those based on ‘‘deformable templates’’: see [2,23,26,27].

The purpose and contents of this paper
On the theoretical side, we will provide some support for the use of interpoint distance distributions to characterize

shapes: first, we relate, in Theorem 1, the distance between interpoint distance distributions with a natural, geometrically
motivated, distance between shapes defined in Section 2. Second,we consider the problemof providing a sufficient condition
on the sets in the Euclidean plane in order to ensure that two different sets fulfilling this condition must necessarily have
different interpoint distance distributions. Theorem 2 provides a quite general identifiability criterion, which is in fact
the most general result of this type we are aware of. In the Supplementary material section (see Appendix A) we also
briefly consider the connection between the interpoint distance distribution and the covariogram (sometimes called ‘‘set
covariance’’), another popular function which has been used sometimes to characterize sets and shapes; see [10,11].

Finally, in Section 5 our methodology based on interpoint distance distributions is used in a problem of fishes otoliths
classification, via hierarchical clustering.

2. The space of shapes

In what follows we will mainly focus on the case of shapes in the plane R2 (the most important, by far, in practical
applications). However, some of the ideas we will develop can be also adapted to more general, multivariate cases. Our
starting point will be the family C of compact non-empty sets in R2 with diameter 1; this means that diam(C) = max{∥x−

y∥, x, y ∈ C} = 1, for all C ∈ C, where ∥ · ∥ stands for the Euclidean norm. We may think that the family C is the result
of transforming the set of all possible plane images by a uniform change of scale (where ‘‘uniform’’ means that the same
transformation scale is applied in both coordinates) in such a way that all of them have a common diameter. We will define
our space of shapes as the quotient space obtained fromanatural equivalence relation inC. However, the familyC is too large
to work with (in particular, to define a meaningful, tractable distance between shapes). So wewill need to restrict ourselves
to a smaller subset C1 ⊂ C which, still, will include most ‘‘black-and-white’’ images arising in practical applications.

To bemore specific, given two positive constants a andm1, we define C1 as the class of sets C ∈ C fulfilling the following
conditions:

(i) µ(C) ≥ a, where µ denotes the Lebesgue measure in R2.
(ii) All the sets in C1 are regular, that is, every C ∈ C1 fulfills C = int(C).
(iii) µ(B(∂C, ϵ)) < m1ϵ, ∀ϵ ∈ (0, 1].
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