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a b s t r a c t

We examine the rate of convergence of the Lasso estimator of lower dimensional com-
ponents of the high-dimensional parameter. Under bounds on the ℓ1-norm on the worst
possible sub-direction these rates are of order

√
|J| log p/n where p is the total number

of parameters, n is the number of observations and J ⊂ {1, . . . , p} represents a subset of
the parameters. We also derive rates in sup-norm in terms of the rate of convergence in
ℓ1-norm. The irrepresentable condition on a set J requires that the ℓ1-norm of the worst
possible sub-direction is sufficiently smaller than one. In that case sharp oracle results can
be obtained. Moreover, if the coefficients in J are small enough the Lasso will put these
coefficients to zero. By de-sparsifying one obtains fast rates in supremum norm without
conditions on the worst possible sub-direction. The results are extended to M-estimation
with ℓ1-penalty for generalized linear models and exponential families. For the graphical
Lasso this leads to an extension of known results to the case where the precision matrix is
only approximately sparse. The boundswe provide are non-asymptotic butwe also present
asymptotic formulations for ease of interpretation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider estimation bounds for parameters of interest in high-dimensional models. We apply the M-estimation
procedurewith ℓ1-penalty. Let p be the number of parameters and n the number of observations.We show that under certain
conditions, for a subset J ⊂ {1, . . . , p}, the group of parameters with index in J can be estimated with rate

√
|J| log p/n in

ℓ2-norm. For this to happen, the ‘‘worst possible sub-direction’’ is required to have a bounded ℓ1-norm. If this ℓ1-norm is less
than one, we obtain oracle rates

√
|J ∩ S| log p/nwhere S is the set of active parameters or a sparse approximation thereof.

Taking J to be the complement of the set S gives variable selection results under an irrepresentable condition.
By de-sparsifying one obtains fast rates (of order 1/

√
n under certain conditions) for one-dimensional parameters

without conditions on the ℓ1-norm of the worst possible sub-direction. The de-sparsified estimator can moreover be used
for the construction of asymptotic confidence intervals for parameters of interest. This study is an intermediate step towards
this end.We investigate the rates and conditions for remainder terms to be negligible. Global convergence (e.g. in ℓ1-norm) is
generally sufficient for the latter. However, in high-dimensional models which are not very sparse, global convergence does
not happen. For example, when estimating a p × p precision matrix (where there are actually p(p − 1)/2 parameters), the
global rate in ℓ1-norm will not be faster than p

√
log p/n. To handle such cases, we show that the irrepresentable condition

on the set of small coefficients yield rates in the sup-norm.
The high-dimensional models studied in this paper are close relatives of the infinite-dimensional models occurring in

functional data analysis. We refer for the latter to the books Silverman and Ramsay [24], Ferraty and Vieu [12], Horváth
and Kokoszka [13] and Bongiorno et al. [9] and to Cuevas [11] for a recent overview. Functional regression can sometimes
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be discretized making the model formally equivalent to a high-dimensional one. However, functional regression often
has a different structure for the coefficients i.e., the structure is not directly described by sparsity. We refer to Kneip and
Sarda [17], Aneiros and Vieu [1,2] for important results on variable selection in functional regression. The paper Koltchinskii
and Minsker [19] on the other hand studies the functional regression model with sparsity. It will be an interesting topic for
future research to combine these various results and further unify functional and high-dimensional theory.

1.1. Related work

The literature on a semi-parametric approach to confidence intervals and testing in high dimensions is expanding quickly.
An important reference is Zhang and Zhang [35] and further work can be found in [15,16,32] and the papers Belloni et al.
[6,3,4]. Our work presents rates in sup-norm for Lasso estimators and is in that aspect related to Lounici [20], Ye and
Zhang [34] although our conditions are based on worst possible sub-directions instead of incoherence or invertibility
factors. Also related is Wainwright [33] but our work does not rely on irrepresentable conditions, i.e., the ℓ1-norm of the
worst possible sub-direction is allowed to be larger than one (but if it is smaller we reproduce variable selection results).
Irrepresentable conditions for variable selection were introduced in [21,36]. Our formulation shows these are conditions on
worst possible sub-directions. We moreover extend the situation to models which are only approximately sparse.

1.2. Organization of the paper

The paper is organized as follows. In Section 2we consider the linearmodelwith fixed design and the Lasso estimator. The
section stays close to results in literature. Sections 2.1 and 2.2 contain results for single variables (and their implications for
sup-norms).We consider de-sparsifying the Lasso in Section 2.3, and discuss thresholding yielding a re-sparsified estimator.

Section 3 generalizes the results for single variables to results for groups. Sharp oracle inequalities as well as variable
selection results are derived. This leads to a further refinement in Section 3.1 where we prove that under certain
irrepresentable conditions the Lasso will estimate small coefficients as being zero. In Section 3.2, we present results for
a de-sparsified estimator of a group of variables.

In the remainder of the paper worst possible sub-directions are in terms of theoretical (unknown) quantities, which
mean they do not immediately lead to a de-sparsifying procedure. We remark that de-sparsifying is nevertheless possible
(see also [32,14]) but a full discussion goes beyond the scope of this paper. Section 4 studies general loss functions. In
Section 5 we discuss the remainder term, for the linear model with random design (Section 5.1), the generalized linear
model (Section 5.2) and exponential families (Section 5.3). Then we move to Brouwer’s fixed point theorem for deriving
rates for estimators defined as solution of a system of equations. This theorem provides a way to handle the situation where
the global rate is not fast enough to deal with the remainder term. We apply this in Section 7 to derive rates in sup-norm
from the KKT conditions. Finally, we examine in Section 8 the remainder term of the graphical Lasso as an example. The
approach there is as in [23] but with the extension to models which are only approximately sparse. All proofs are in the
supplement van de Geer [31].

The results in this paper are presented in a non-asymptotic form. To simplify their interpretation, we present a separate
asymptotic formulation at various stages, where we assume ‘‘standard’’ asymptotic scenarios.

2. The linear model with fixed design: results for single variables

Let Y be an n-vector of response variables and X a fixed n × p design matrix and consider the model

Y = Xβ0
+ ϵ, (1)

where ϵ is unobservable noise and β0 is a p-vector of unknown coefficients. We assume throughout that Eϵ = 0 and
EϵϵT = σ 2

ϵ I , where in asymptotic formulations σϵ = O(1). For a vector v ∈ Rn we write (with some abuse of notation)
∥v∥2

n := vTv/n. The Lasso estimator [25] is

β̂ := β̂(λ) := min
β∈Rp


∥Y − Xβ∥

2
n + 2λ∥β∥1


. (2)

Here,λ is a tuning parameterwhichmay be chosen data-dependent (e.g. when using the square root Lasso introduced in [5]).
Typically, λ is chosen of order

√
log p/n and proportional to some estimate of the noise level σϵ := (E∥ϵ∥2

n)
1/2.

The estimator β̂ satisfies the Karush–Kuhn–Tucker or KKT conditions

− XT (Y − X β̂)/n + λẑ = 0 (3)

where ẑj = sign(β̂j) if β̂j ≠ 0 and ∥ẑ∥∞ ≤ 1. Thus, β̂T ẑ = ∥β̂∥1 and

Y T (Y − X β̂)/n = ∥Y − X β̂∥
2
n + λ∥β̂∥1. (4)

These equalities will play a key role in our proofs.
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