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a b s t r a c t

We propose a multivariate functional linear regression (mFLR) approach to analysis
and prediction of multivariate functional data in cases in which both the response and
predictor variables contain multivariate random functions. The mFLR model, coupled with
the multivariate functional principal component analysis approach, takes the advantage
of cross-correlation between component functions within the multivariate response
and predictor variables, respectively. The estimate of the matrix of bivariate regression
functions is consistent in the sense of the multi-dimensional Gram–Schmidt norm and is
asymptotically normally distributed. The prediction intervals of the multivariate random
trajectories are available for predictive inference. We show the finite sample performance
of mFLR by a simulation study and illustrate the method through predicting multivariate
traffic flow trajectories for up-to-date and partially observed traffic streams.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Functional regression analysis iswidely used to describe the relationship between response and predictor variableswhen
at least one of the variables contains a random function (see Cuevas [11], Ferraty and Vieu [17], Horváth and Kokoszka [23],
Müller [29], and Ramsay and Silverman [34] for excellent overviews). There has been intensive literature in the functional
linear regression (FLR) models of the type of a scalar response and a functional predictor, the simple FLR. Two methods are
typically used to address the simple FLR model. The most popular one is based on functional principal component analysis
(FPCA) (e.g., Cardot et al. [5] andHall andHorowitz [21]). The other is based on penalized regularization such as the penalized
B-splines (Li and Hsing [26]) and the reproducing kernel Hilbert space approaches (Yuan and Cai [37]).

This simple FLRmodel was extended to nonlinear and semiparametric functional regressionmodels to accommodate the
case ofmultiple functional predictors or the situationwhen the relationship between response and predictor variables is not
linear. These include the generalized single and multiple index FLR models with known or unknown link (Amato et al. [1],
Chen et al. [6], Ferraty et al. [15], James [24],Müller and Stadtmüller [30]), the additive functional regressionmodel (Febrero-
Bande, Gonzalez-Manteiga [14], Ferraty and Vieu [18], Goia and Vieu [20]), the semi-functional partial linear regression
(Aneiros-Perez and Vieu [3]), FLR with derivatives as supplementary covariates (Goia [19]), and time series prediction (Mas
and Pumo [27]).

FLR models with a single random function as the response were introduced by Ramsay and Dalzell [33]. These include
functional response models with scalar predictors (Chiou et al. [9,10], Faraway [13]) and the functional linear regression
model with a functional response and a functional predictor (Ferraty et al. [16], Yao et al. [36]). Generalizations of functional
response models include functional additive models (Müller and Yao [31]) and the functional mixture prediction model
(Chiou [7]). Functional responsemodels withmore than one functional predictors were discussed inMatsui et al. [28]. More
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recently, the functional response additivemodel estimation (Fan et al. [12]) and the functional errors-in-variable (Radchenko
et al. [32]) approaches consider univariate functional responses and multivariate functional predictor variables, which are
interesting methods for functional response models. Albeit the extensive development of functional regression models,
functional response models with multivariate random functions as the response variable have not been discussed in the
literature.

We develop a multivariate FLR (mFLR) model in which both the response and predictor variables contain multivariate
random trajectories and are contaminated with measurement errors. The mFLR model takes the advantage of component
dependency of multivariate random functions and accommodates incomparable magnitudes of variation among the
component functions of the response and predictor variables, respectively. We discuss the existence and uniqueness of
the estimates of bivariate regression functions, obtain the asymptotic properties of the estimators, and construct relevant
pointwise and simultaneous prediction intervals for the predictive inference. We illustrate the finite sample performance
of the proposed mFLR approach through a simulation study and apply the method to predict future multivariate traffic flow
trajectories for an up-to-date and partially observed traffic streams in intelligent transportation systems.

The remainder of this article is organized as follows. In Section 2,wepresent the proposedmultivariate FLR (mFLR)model.
In Section 3, we discuss estimation of the regressionmodel and prediction of futuremultivariate trajectories with prediction
intervals. In Section 4, we derive the asymptotic properties of themFLRmodel. In Section 5, we present the numerical results
of a simulation study and a real-life application to multivariate traffic-flow data. Technical details and information on the
estimation process are compiled in Appendices A.1–A.5. More technical details and numerical results are provided in the
online Supplement (see Appendix B).

2. Multivariate functional linear regression model

2.1. Preliminaries

Let {Xl}1≤l≤p and {Yk}1≤k≤d be the sets of random functions, corresponding to the predictor and response variables, with
each Xl in L2(S) and Yk in L2(T ), where L2(·) is a Hilbert space of square-integrable functions with respect to Lebesgue
measures ds and dt on closed intervals S and T .

Further, let X(s) =

X1(s), . . . , Xp(s)

⊤ be a vector in a Hilbert space of p-dimensional vectors of functions in L2(S),
denoted by H1 = Lp2(S). Assume X(s) has a smooth mean function µX (s) = (µX

1 (s), . . . , µ
X
p (s))

⊤, µX
l (s) = EXl(s), and

covariance function GX (s1, s2) =

GX
jl (s1, s2)


1≤j,l≤p

, GX
jl (s1, s2) = cov


Xj(s1), Xl(s2)


. Similarly, Y (t) = (Y1(t), . . . , Yd(t))⊤

in H2 = Ld2(T ) has a smooth mean function µY (t) = (µY
1 (t), . . . , µ

Y
d (t))

⊤, µY
k (t) = EYk(t), and covariance function

GY (t1, t2) =

GY
km(t1, t2)


1≤k,m≤d, G

Y
km(t1, t2) = cov (Yk(t1), Ym(t2)). In addition, let the diagonal matrices be DX (s) =

diag

vX
1 (s)1/2, . . . , vX

p (s)1/2

, where vX

l (s) = GX
ll (s, s) and DY (s) = diag


vY
1 (t)1/2, . . . , vY

d (t)1/2

, where vY

k (t) = GY
kk(t, t).

The inner product of any functions f and g in L2(S) is ⟨f , g⟩ =


S
f (s)g(s)ds, with the norm ∥ · ∥ = ⟨·, ·⟩1/2. The inner

product of any functions f = (f1, f2, . . . , fp)⊤ and g = (g1, g2, . . . , gp)⊤ in H1 is ⟨f , g⟩H1 =
p

l=1⟨fl, gl⟩, and the norm
∥ · ∥H1 = ⟨·, ·⟩

1/2
H1

. The inner product of two functions in H2, ⟨·, ·⟩H2 , is defined in the same way.
To accommodate incomparable magnitudes of variation between the component functions {Xl(s)} (resp. {Yk(t)}), we

take the transformation approach of Chiou et al. [8]. Let XZ (s) = (XZ
1 (s), . . . , XZ

p (s))⊤ = DX (s)−1
{X(s) − µX (s)} (resp.

Y Z (t) = (Y Z
1 (t), . . . , Y Z

d (t))⊤ = DY (t)−1
{Y (t) − µY (t)}). It follows that XZ (s) (resp. Y Z (t)) has a mean of 0 and covariance

function CX (s1, s2) = {CX
jl (s1, s2)} (resp. C

Y (t1, t2) = {CY
km(t1, t2)}), where CX

jl (s1, s2) = E{XZ
j (s1)XZ

l (s2)} (resp. CY
km(t1, t2) =

E{Y Z
k (t1)Y Z

m(t2)}). Then, there exists an orthonormal eigenbasis, {φX
Z,r(s)}r≥1, where φX

Z,r(s) = (φX
Z,1r(s), . . . , φ

X
Z,pr(s))

⊤ and
⟨φX

Z,q, φ
X
Z,r⟩H1 = δrq, the Kronecker delta, with the corresponding non-negative eigenvalues {λX

Z,r}r≥1 in descending or-
der, such that CX (s1, s2) =


∞

r=1 λX
Z,r φX

Z,r(s1) φX
Z,r(s2)

⊤, whose (j, l) element is CX
jl (s1, s2) =


∞

r=1 λX
Z,r φX

Z,jr(s1) φX
Z,lr(s2)

⊤.
Similarly, we define {λY

Z,r}r≥1, and {φY
Z,r(t)}r≥1 and φY

Z,r(t) = (φY
Z,1r(t), . . . , φ

Y
Z,dr(t))

⊤ in H2 such that CY (t1, t2) =
∞

q=1 λY
Z,q φY

Z,q(t1) φY
Z,q(t2)

⊤.

2.2. Multivariate functional linear regression model

The multivariate functional linear regression (mFLR) model is based on the transformed variables XZ and Y Z , which can
be represented as follows:

XZ (s) =

∞
r=1

ξX
Z,rφ

X
Z,r(s), s ∈ S


resp. Y Z (t) =

∞
q=1

ξ Y
Z,qφ

Y
Z,q(t), t ∈ T


, (1)

where ξX
Z,r = ⟨XZ , φX

Z,r⟩H1 (resp. ξ Y
Z,q = ⟨Y Z , φY

Z,q⟩H2 ) is a random coefficient that satisfies EξX
Z,r = 0, E(ξX

Z,rξ
X
Z,q) = λX

Z,rδrq

(resp. Eξ Y
Z,q = 0, and E(ξ Y

Z,qξ
Y
Z,r) = λY

Z,qδqr ). The components {XZ
l } in XZ are correlated, so are the components {Y Z

l } in Y Z .
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