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a b s t r a c t

In this paper, ridge and non-ridge type estimators and their robust forms are defined in the
semiparametric regressionmodel when the errors are dependent and some non-stochastic
linear restrictions are imposed under a multicollinearity setting. In the context of ridge
regression, the estimation of shrinkage parameter plays an important role in analyzing
data. Another common problem in applied statistics is the presence of outliers in the data
besides multicollinearity. In this respect, we propose some robust estimators for shrinkage
parameter based on least trimmed squares (LTS) method. Given a set of n observations
and the integer trimming parameter h ≤ n, the LTS estimator involves computing the
hyperplane that minimizes the sum of the smallest h squared residuals. The LTS estimator
is closely related to the well-known least median squares (LMS) estimator in which the
objective is to minimize the median squared residual. Although LTS estimator has the
advantage of being statistically more efficient than LMS estimator, the computational
complexity of LTS is less understood than LMS. Here, we extract the robust estimators for
linear and nonlinear parts of the model based on robust shrinkage estimators. It is shown
that these estimators perform better than ordinary ridge estimator. For our proposal, via a
Monté-Carlo simulation and a real data example, performance of the ridge type of robust
estimators are compared with the classical ones in restricted semiparametric regression
models.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric regression models (SRMs) are appropriate models when a suitable link function of the mean response is
assumed to have a linear parametric relationship to some explanatory variables while its relationship to the other variables
has an unknown form. Let (y1, x⊤

1 , t1), . . . , (yn, x
⊤
n , tn) be the observations that follow the semiparametric regressionmodel,

that is,

yi = x⊤

i β + f (ti)+ ϵi, i = 1, . . . , n, (1.1)

where x⊤

i = (xi1, . . . , xip) is a vector of explanatory variables, β = (β1, . . . , βp)
⊤ is an unknown p-dimensional vector

parameter, ti’s are design points which belong to some bounded domain D ⊂ R, f (t) is an unknown smooth function and
ϵi’s are random errors which are assumed to be independent of (xi, ti).

Surveys regarding the estimation and application of the model (1.1) can be found in the monograph of Härdle et al. [14].
Speckman [38] studied partial residual estimation of β and f (·) in (1.1), and obtained asymptotic bias and variance of
the estimators. He showed that these estimators are less biased compared to the partial smoothing spline estimators.
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Bunea [10] proposed a consistent covariate selection technique in an SRM through penalized least squares criterion. He
showed that the selected estimator of the linear part is asymptotically normal. You and Chen [42] considered the problem
of estimation inmodel (1.1)with serially correlated errors, obtained the semiparametric generalized least-squares estimator
of the parametric component and studied the asymptotic properties of it. You et al. [43] developed statistical inference for
the model (1.1) for both heteroscedastic and/or correlated errors under general assumption Var(ϵ) = σ 2V , with a positive
definite matrix V , is supposed to hold. For bandwidth selection in the context of kernel-based estimation in model (1.1), Li
et al. [22] used cross-validation criteria for optimal bandwidth selection.

Now consider a semiparametric regression model in the presence of multicollinearity. The existence of multicollinearity
may lead to wide confidence intervals for the individual parameters or linear combination of the parameters and may
produce estimates with wrong signs. For our purpose we only employ the ridge regression concept due to Hoerl and
Kennard [17], to combat multicollinearity. There are a lot of works adopting ridge regression methodology to overcome the
multicollinearity problem. Tomention a few recent researches in full-parametric regression, see [36,15,20,21,6,5]. However
Akdenïz and Tabakan [2], Roozbeh et al. [31], AkdenïzDuran et al. [3], Roozbeh andArashi [30], Amini andRoozbeh [4], Arashi
and Valizadeh [7] and Roozbeh [29] adopted this approach in facing with semiparametric regression model. The main focus
of this approach is to develop necessary tools for computing the risk function of regression coefficient in a semiparametric
regression model based on the eigenvalues of design matrix and then, estimating it based on robust approach.

The restricted models are widely applicable in the problem of general hypothesis testing specially the generalized
likelihood ratio (GLR) tests in regression models. Norouzirad et al. [28] defined a restricted LASSO estimator and configure
three classes of LASSO type estimators to fulfill both variable selection and restricted estimation in regressionmodel. Akdenïz
and Tabakan [2] and Akdenïz et al. [1] developed the restricted ridge and Liu estimators in semiparametric regression
models. The problem of restricted ridge partial residual estimation in a semiparametric regression model with correlated
errors is studied by Amini and Roozbeh [4] used generalized cross-validation (GCV) criteria for optimal bandwidth and ridge
parameter selection in model (1.1), simultaneously.

Besides multicollinearity, outliers (points that fail to follow partial linear pattern of the majority of the points) are
another common problem in the regression analysis. Robust regressionmethods are used to overcome the effects of outliers
(inflated sum of squares, bias or distortion of estimation, distortion of p-values, etc.). Here, we only employ the least
trimmed squares semiparametric regression estimators for both parts of our model. It is well-known that the ordinary
least-squares estimator is very sensitive to outliers. This motivated the researchers to focus on robust estimators. Examples
of recent researches in full-parametric regression include the studiesmade by Edelsbrunner and Souvaine [11], Bernholt [8],
Jung [19], Erickson et al. [12], Bremner et al. [9], Nguyen andWelsch [27],Mount et al. [25,24] and Roozbeh and Babaie-Kafaki
[32].

The basic measure of the robustness of an estimator is its breakdown point, that is, the fraction (up to 50%) of outlying
data points that can corrupt the estimator arbitrarily. The study of efficient algorithms for robust statistical estimators
have been an active area of research in computational geometry. Many researchers studied Rousseeuw’s least median of
squares estimatorwhich is defined to be the hyperplane thatminimizes themedian squared residual (for example, see [33]).
Although the vast majority of works on robust linear estimation in the field of computational geometry has been devoted
to the study of the LMS estimator, it has been observed by Rousseeuw and Leroy [34] that LMS is not the estimator of choice
from the perspective of statistical properties. They argued that a better choice is the least trimmed squares. The breakdown
point of LTS and LMS are the same. Like LMS, the LTS estimator is a robust estimator with a 50%-breakdown point which
means that the estimator is insensitive to the corruptionmade by outliers, provided that the outliers constitute less than 50%
of the set. However, LTS has a number of advantages in contrast to LMS. The LTS objective function is smoother than that of
LMS. LTS has better statistical efficiency because it is asymptotically normal (see [33]) and converges faster. Rousseeuw and
van Driessen [35] remarked that, for these reasons, LTS is more suitable as a starting point for two-step robust estimators
such as the MM-estimator (see [41]) and generalized M-estimators (see [37]).

The main focus of this paper is to study a robust generalized least squares ridge estimator in restricted semiparametric
regression model. The organization of the paper is as follows: Section 2 contains the classical estimator of restricted
semiparametric regression model based on kernel approach and related assumptions. The properties of generalized
restricted ridge estimator of linear part are exactly derived in Section 3. We review least trimmed squares estimators in
semiparametric regression model and then, propose a new robust estimator in restricted semiparametric regression model
together with its theoretical properties in Section 4. We estimate the shrinkage parameter based on robust methods in
Section 5 and then, the proposed generalized least squares ridge estimator will be reconstructed based on robust estimators
of shrinkage parameter. In Section 6, the efficiencies of robust estimators relative to nonrobust estimator are evaluated for
both ridge and nonridge types through the Monté-Carlo simulation studies as same as a real data example. Finally, some
concluding important results are stated in Section 7.

2. The classical estimators under restriction

Consider the following semiparametric regression model

y = Xβ + f (t)+ ϵ, (2.1)
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