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a b s t r a c t

In this paper, we introduce a new procedure for the estimation in the nonlinear functional
regression model where the explanatory variable takes values in an abstract function
space and the residual process is autocorrelated. Moreover, we consider the case where
the response variable takes its values in Rd. The procedure consists in a pre-whitening
transformation of the dependent variable based on the estimated autocorrelation. We
establish both consistency and asymptotic normality of the regression function estimate.
For kernel methods encountered in the literature, the correlation structure is commonly
ignored (the so-called ‘‘working independence estimator’’); we show here that there is a
strong benefit in taking into account the autocorrelation in the error process. We also find
that the improvement in efficiency can be large in our functional setting, up to 25% in the
presence of high autocorrelation levels.We observe that the additional step of iterating the
fitting process actually deteriorates the estimation. We illustrate the skills of the methods
on simulations as well as on application on ozone levels over the US.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The use of functional data analysis methods is spreading in statistics due to the availability of high frequency data and
of new mathematical strategies to deal with such statistical objects. The field is known as Functional Data Analysis (FDA).
Applications of FDA are growing across fields as diverse as energy studies [2], linguistics [3], atmospheric chemistry [29],
and human vision [28]. Functional variables are often curves, but surfaces andmanifolds have also been considered recently
(e.g., [23,34]). For an introduction to this field, along with illustrations and applications, see [31]. For a mathematical
treatment of nonparametric methods suitable for functional regression, refer to Ferraty and Vieu [21], and for a survey
of the state of the art in FDA theory, see [8].

Kernel-based methods are often used to estimate the regression operator. This approach yields almost sure consistency
in the case of an independent sample [19] or an α-mixing sample [16,17], but also asymptotic normality in the independent
case [18] with exact computation of all the constants for its precise use in practice. Masry [27] established the asymptotic
normality of the nonparametric regression estimator for strongly mixing processes albeit with abstract expressions of the
constants so this is more challenging to use in practice. Delsol [12,13] generalized the results of Ferraty et al. [18] to the case
of an α-mixing dataset.
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In this paper, we consider the regression of a multivariate random variable onto a functional random variable. The
estimation of the regression function is tackled bymeans of a nonparametric kernel approach. The existing kernel regression
estimators dealing with functional explanatory variables are for scalar response; we have not found existing research on
functional nonparametric modeling for multivariate response. With multivariate explanatory variables and a multivariate
response, Xiang et al. [36] proposed a kernel estimate of the regression function. Our regressionmodel below is an extension
of Xiang et al. [36]:

Yt = m(Xt)+ ut , t = 1, . . . , T , (1)

where Yt = (Yt,1, . . . , Yt,d)
⊤

∈ Rd, m(Xt) = (m1(Xt), . . . ,md(Xt))
⊤, the explanatory variable is functional (that is, Xt

takes values in some possibly infinite-dimensional space), ut = (ut,1, . . . , ut,d)
⊤. Moreover, the stationary residual process

ut is autocorrelated and independent of Xt . We do not necessarily assume that (Xt , Yt)t is strictly stationary, second order
stationarity suffices.

Although, for the kernel methods proposed in the literature, it is generally better to ignore the correlation structure
entirely (the so-called ‘‘working independence estimator’’, e.g. [33,26]), we show here that taking into account the
autocorrelation of the error process helps improve the estimation of the regression function.

We extend the kernel-based procedure proposed by Xiao et al. [37] for estimating m(x) in the time series regression
model for multivariate explanatory variables x to a functional setting. Xiao et al. [37] showed that their procedure is more
efficient than the conventional local polynomialmethod. Themain idea is to transform the original regressionmodel, so that
this transformed regression has a residual term that is uncorrelated. This transformation depends on the functionm(·) and
on the parameters of the autoregressive representation of u, since the regression function is nonlinear. The error correlation
structure is assumed to have an autoregressive representation. Firstly, the parameters of the autoregressive representation
are estimated. In a second step, a transformationYt of the dependent variable Yt is constructed by plugging in the estimated
autocorrelation parameter. Finally, the estimation ofm is carried out on this filtered seriesYt .

The remainder of the paper is organized as follows. In Section 2, we introduce the estimation method as well as the
assumptions. We then provide asymptotic results for the estimator proposed. Section 3 is devoted to a simulation case
study and an illustration of our method for ozone levels over the US. The conclusion is done in Section 4 while the proofs
are given in the Appendix A.

2. Assumptions and main results

Suppose that we have a sample {(X1, Y1), . . . , (XT , YT )}, where for each t ∈ {1, . . . , T }, Xt is a random variable taking its
values in a semi-metric space (C, d) of infinite dimension and Yt ∈ Rd is the response from the nonparametric regression
(1). We assume that the residual process ut ∈ Rd is stationary, has mean 0 with cross-covariance (auto-covariance in the
univariate case) γu and has the following invertible linear process representation (with bounded coefficients):

ut =

∞
k=0

Ψket−k = Ψ (L)et , (2)

where Ψ0 = I is the identity matrix, Ψ (L) =


∞

k=0 ΨkLk is a d × d matrix in the lag operator L (Lk(et) = et−k), the (i, j)th
element of Ψ (L) is ψij(L) =


∞

k=0 cij(k)L
k, the random vectors et ∈ Rd form a white noise process with mean E(et) = 0,

E(ete⊤
t ) = Σe is a positive definite matrix, E(etet+k) = 0 for k ≠ 0 and E


|et,j|


< ∞ for all j ∈ {1, . . . , d}.

Let Ψ (L)−1
= Π(L) = I −


∞

k=1ΠkLk with Π0 = I , or as done for Ψ let the (i, j)th element of Π(L) be πij(L) =
∞

k=0 aij(k)L
k. We then have the infinite autoregressive representation

Π(L)ut = et . (3)

Note that stationary, causal and invertible vector ARMA processes

ut −

p
k=1

Φkut−k = et−k −

q
k=1

Θket−k

can be represented as in (2)–(3) if all roots of det{Φ(L)} and det{Θ(L)} are greater than 1 in absolute value.
Here, we consider a truncated version ofΠ(L) at order Q , i.e.,Π(L) = I −

Q
k=1ΠkLk, where the truncation parameter

Q is large enough. ApplyingΠ(L) to the regression in Eq. (1), we obtainΠ(L)Yt = Π(L)m(Xt)+ et . Then let the regression
model Yt = m(Xt) + et , with Yt = Yt −

Q
k=1ΠkLk{Yt − m(Xt)}, so the error term in this transformed model is now

uncorrelated. The matrix of coefficients {Ψk}
∞

k=0 and the regression functionm(·) are unknown, except for the fact thatm(·)
is a smooth function. If Yt were known then a nonparametric kernel regression of Yt on Xt would be more efficient than the
conventional kernel estimation. In this work, we employ a Nadaraya–Watson estimator as introduced in [20,27,11] where
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