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a b s t r a c t

Follow-up studies on a group of units are commonly carried out to explore the possibil-
ity that a response distribution has changed at unobservable time points that are differ-
ent for different units. Often, in practice, there will be many potential covariates, which
may not only be associated with the response distribution but also with the distribution
of the unobservable change-points. Here, the covariates are allowed to enter the change-
point distribution through a proportional odds model whose baseline odds is assumed to
be piecewise constant as a function of time. The combination of a large number of putative
regression coefficients in the response distributions as well as the change-point distribu-
tion, alone leads to a challenging simultaneous variable selection and estimation problem.
Moreover, selection and estimation of the parameters that determine the coarseness of the
baseline odds function adds a further level of complexity. Using penalized likelihoodmeth-
ods we are able to simultaneously perform variable selection, estimation, and determine
the coarseness of the baseline odds function. Our approach is computationally efficient and
shown to be consistent in variable selection and parameter estimation. We assess its per-
formance through simulations, and demonstrate its usage in fitting a model for cognitive
decline in subjects with Alzheimer’s disease.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Alzheimer’s disease (AD), the rate of progression is highly variable and there has been much interest in the
identification of factors associated with cognitive decline [6,10]. Similarly, in clinical trials interest may be in factors
associated with the expected responses following the administration of a treatment [4]. Further, floor and ceiling effects
in tests of cognition such as the Mini-Mental State Exam (MMSE), and a delay to treatment effect in clinical trials, induce
changes in the response distribution at time points that are not directly observable. In this multi-subject (i.e., multi-path)
change-point setting, it is expected that the response distribution as well as the distribution of the change-points will be a
function of subject-specific covariates.

Often, the number of covariates initially entertained is large although many may be spurious and must be selected out.
The combination of a large number of initial regression coefficients in the response distributions as well as the change-point
distribution, alone leads to a challenging simultaneous variable selection and estimation problem. We allow the covariates
to enter the change-point distribution through a proportional odds model whose baseline odds is assumed to be piecewise
constant as a function of time. This results in an additional level of complexity where it is desired to carry out simultaneous
selection and estimation of the parameters that determine the coarseness of the baseline odds function. For instance,
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in the illustrative Alzheimer’s disease application that we present in Section 7, even with a small number of covariates,
simultaneous de-coarsening and variable selection leads to a forbidding number, 246, of submodels. We overcome the
difficulties that frequently accompany variable selection and estimation inmulti-path change-point problems by developing
a methodology based on a penalized likelihood approach.

Multi-path change-point models with covariates in the change-point distribution, as well as the response distributions,
were presented in [2]. The discussion in this paper did not, however, address the variable selection problem andwas limited
to maximum likelihood estimation.

Most of the research on variable selection using familiar penalty functions such as the LASSO [19], SCAD [8], adaptive
LASSO [25], fused LASSO [20], and the smooth integration of counting and absolute deviation (SICA, [15]), has focused
on linear and generalized linear regression models. More recently, attention has turned to segmented regression models
where the cut-points are unknown. In particular, this research has focused on a single-path change-point model with the
assumption that the responses are independent random variables. For example, Wu [23] proposed an information criterion
for simultaneous change-point detection and variable selection in a linear regression model with a possible change-point.
Harchaoui and Lévy-Leduc [11] proposed amethod based on the LASSO/LARS for estimating the locations ofmultiple change-
points in a single-path piecewise constant regression function. Ciuperca [5] used the LASSO for variable selection and
estimation in a single-path change-point model with a fixed number of regression segments. She extended her methods
to an unknown number of segments. As will be seen in Section 2, themulti-path change-point model that we discuss here is
quite different from those considered in the above papers, and to the best of our knowledge the problem of variable selection
aswell as de-coarsening in thismodel has not been addressed. Such scenarios are particularly important for analyzingmulti-
subject longitudinal data that are frequently collected in the medical and other fields.

The layout of the paper is as follows. In Section 2, we formally introduce the multi-path change-point model with
covariates. In Section 3, we present our penalized likelihood approach to the problems of variable selection, estimation,
and de-coarsening. In Section 4, we describe the algorithm for numerical computations. Section 5 contains the asymptotic
properties of our method. An investigation of its finite-sample properties through simulations is described in Section 6.
We demonstrate the usage of the proposed method when fitting a model for cognitive decline in subjects with Alzheimer’s
disease in Section 7. Section 8 contains closing remarks.

2. Terminology and the model

Let observations on a scalar-valued response variable Yand a covariate-vector X = (X1, . . . , Xp)
⊤ be taken on the time

interval [0, T ], for n subjects at equally spaced time points, 0 = t1 < · · · < tm = T .
For i ∈ {1, . . . , n}, let (Yi,Xi) = (Yi1, . . . , Yim, Xi1, . . . , Xip) denote the random vector of observations for subject i. We

denote the corresponding realized values by (yi, xi) = (yi1, . . . , yim, xi1, . . . , xip). We shall call a discrete random variable
τi < m a change-point, if conditional on τi = k and the covariate values xi, the joint distribution of the responses before
and including k is different from the joint distribution of the responses after k. The τi’s are not directly observable and can
be considered as latent variables.

Let f ∗

1 (yiℓ; θ1(xi), φ1) and f ∗

2 (yiℓ; θ2(xi), φ2) be the respective marginal conditional probability density functions before
and after the change. We assume that conditional on τi = k and xi, the responses are independent. For a possible relaxation
of this assumption see Section 8. Under conditional independence we have

(Yi1, . . . , Yik)
xi ∼

k
ℓ=1

f ∗

1 (yiℓ; θ1(xi), φ1),

(Yi,k+1, . . . , Yim)
xi ∼

m
ℓ=k+1

f ∗

2 (yiℓ; θ2(xi), φ2)

for k ∈ {1, . . . ,m−1}. Consequently, the conditional joint density function for the responses of the ith subject, given τi = k
and xi, is

fk(yi|xi, ϒ) =

k
ℓ=1

f ∗

1 (yiℓ; θ1(xi), φ1)

m
ℓ=k+1

f ∗

2 (yiℓ; θ2(xi), φ2). (1)

If k = m, by convention, no change is said to have occurred and

fm(yi|xi, ϒ) =

m
ℓ=1

f ∗

1 (yiℓ; θ1(xi), φ1).

We assume θj(xi) = g(βj0 + x⊤

i βj) for j = 1, 2, where g is a known link function and (β10, β1) = (β10, β11, . . . , β1p)
⊤

and (β20, β2) = (β20, β21, . . . , β2p)
⊤ are vectors of regression parameters before and after the change. We denote the

dispersion parameters in the response distributions before and after the change by φ1 and φ2. The vector of all parameters
of the response distributions is denoted by ϒ = (β10, β1, β20, β2, φ1, φ2).
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