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a b s t r a c t

The few largest eigenvalues of Wishart matrices are useful in testing numerous hypothe-
ses and are typically studentized as the noise variance is unknown. Specifically, the largest
eigenvalue is studentized using the average trace of the matrix. However, this ratio has
a distribution poorly approximated by its asymptotic one when either the sample size or
dimension is not too large,making inference problematic.We present a simple variance ad-
justment that significantly improves the approximation and theoretically demonstrate the
increase in power that this adjustment delivers compared to the power of the uncorrected
studentized eigenvalue.We propose a bias corrected consistent estimator of the noise vari-
ance when studentizing the (k+ 1)st largest eigenvalue in the presence of exactly k spikes
and a variance correction for the resulting studentized eigenvalue is proposed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The sample covariance matrix Sn = n−1n
i=1 XiX′

i , based upon n i.i.d. zero-mean p dimensional real Gaussian vectors
Xi follows the well-known Wishart distribution and, being an estimator of the population covariance matrix 6 ≡ var (Xi),
is a natural candidate upon which to base inference about the form of 6. Many such inference problems involve testing
hypotheses about the eigenvalues l1 ≥ · · · ≥ lp > 0 of 6 and are based upon the eigenvalues {l̂i} of the sample covariance
matrix, thus requiring an understanding of their distributions. Examples include tests for sphericity [13] and tests for
detecting signals buried in noise under the spiked covariance model [5]. See also the comprehensive review paper by Paul
and Aue [12].

The behavior of the sample eigenvalues {l̂i} has long been known in the situation where the dimension p is fixed and
not large relative to the sample size n. However, with the increasing availability of large data, attention has shifted to the
high dimensional case where p is large and of the same order as n. Starting with the seminal paper by Johnstone [5], there
has been a growing literature that has studied the asymptotic behavior of the first few largest eigenvalues of such high
dimensional Wishart covariance matrices. A significant proportion of this literature (see, for example, [1,2,11], amongst
others) has focused on the spiked covariance model where the population covariance matrix 6 is parametrized as

6 =

k
i=1

λiθiθ
′

i + σ 2Ip,

where the vectors θi are orthonormal, λ1 ≥ · · · ≥ λk > 0 for some k < p, and σ 2 > 0. Such a parametrization would arise,
for example, if the data vector X had a factor structure of the form

X = Au + e,
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where e ∼ Np

0, σ 2Ip


and is independent of u ∼ Nk (0, Ik), while Ap×k is a deterministic matrix such that AA′ has spectral

factorization given by
k

i=1 λiθiθ
′

i . Under this spiked covariancemodel, the eigenvalues of6 are li = λi+σ 2 for i = 1, . . . , k
and li ≡ σ 2 for i = k + 1, . . . , p and hypotheses about the rank of the factor loading matrix A can be posed equivalently in
terms of null values for the ‘‘spikes’’ λi.

The fundamental null casewhere6 = σ 2Ip (i.e. λi ≡ 0 for all i) was considered by Johnstone [5], who showed in this case
that the distribution of the normalized largest sample eigenvalue l̂1/σ 2, after appropriate centering and scaling, converges
to the appropriate Tracy Widom distribution. However, the noise variance σ 2 is typically unknown and feasible versions of
the normalized eigenvalue need to be ‘‘studentized’’, where σ 2 is replaced by an estimator of the noise variance σ 2, typically
defined by the average trace of Sn. Though the distribution of the infeasible normalized largest eigenvalue l̂1/σ 2 has been
shown [7] to be well approximated, even in small samples, by the asymptotic distribution, Nadler [8] observed that this is
no longer the case for the studentized version, which can be substantially undersized. Nadler [8] proposed a finite sample
adjustment to the asymptotic cumulative distribution function that depends on the second derivative of the asymptotic
distribution and showed through simulations that this adjustment provided a better approximation to the distribution of
the studentized eigenvalue. However, this adjustment necessitates the calculation of adjusted critical values for every (p, n)
combination. In Section 2 we motivate and propose instead a simple variance correction for the studentized statistic itself
that is trivial to compute and also significantly improves the finite sample approximation. In addition, in Section 3 we study
theoretically the impact this adjustment has on the power, increasing it substantially compared to that of the unadjusted
studentized statistic which is undersized and at risk of losing power.

The issue of studentization also arises if the working assumption is that exactly k values of λi are positive and one is
considering the distribution of the normalized (k+1)st sample eigenvalue λ̂k+1/σ

2. In Section 3we propose a bias corrected
consistent estimator for the noise variance by accounting for the k nuisance parameters λi. An analogous variance correction
is proposed for the studentized (k + 1)st eigenvalue and found to once again improve the finite sample approximation to
the asymptotic distribution.

Throughout this paper, we will focus only on the case where X is real valued, though similar results can be obtained for
complex valueddata.Wewill also assume throughout thatXhas aGaussian distribution, though the results of Soshnikov [14]
imply that our results will continue to hold under less restrictive assumptions about the underlying distribution.

2. Non-spiked covariance matrix

In this section we consider the situation where6 = σ 2Ip. Under this assumption, it is known [5] that as min (n, p) → ∞

such that lim γ ≡ p/n ∈ (0, ∞) we get,

(l̂1/σ 2
−µn,p)/σn,p,

D
→W1 (1)

whereµn,p = n−1
√

n − 1 +
√
p
2
,σn,p = (µn,p/n)1/2


1/

√
n − 1 + 1/

√
p
1/3

andW1 obeys the TracyWidomdistribution
of order 1.

Ma [7] proved that replacing the centering and scaling coefficients µn,p and σn,p in (1) by µn,p = n−1


√
n − 1/2 +

√
p − 1/2

2

and σn,p = (µn,p/n)1/2

1/

√
n − 1/2 + 1/

√
p − 1/2

1/3 resulted in an order of magnitude improvement in

the finite sample approximation of the distribution of

l̂1/σ 2

− µn,p


/σn,p by that of W1. Ma [7] also provided a detailed

simulation study that demonstrated the quality of this improvement.
However, in practical situations the noise variance σ 2 is not known and one has to studentize l̂1 by using an estimate of

σ 2. The usual estimator of σ 2 in the null case of 6 = σ 2Ip is simply the average trace of Sn,

σ̂ 2
0 ≡ p−1trace (Sn) = p−1

p
i=1

l̂i.

Since every diagonal element of Sn is distributed as an independent σ 2χ2
n /n random variable, it is easy to see that E


σ̂ 2
0


=

σ 2 while var

σ 2
0


= 2σ 4/ (np). On the other hand, µn,p = O (1) while var


l̂1


= O

n−1p−1/3


and so it is easy to show

that studentizing by replacing σ 2 by σ̂ 2
0 results in the same limiting distribution as in (1), viz.

l̂1/σ̂ 2
0 − µn,p

σn,p

D
→W1. (2)

Unfortunately, in finite samples, the quality of this approximation for the statistic in (2) breaks down due to the
studentization, as pointed out by Nadler [8], who noted that the test statistic in (2) is undersized under the asymptotic
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