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a b s t r a c t

Based on an identifying Volterra type integral equation for randomly right censored
observations froma lifetime distribution function F , we solve the corresponding estimating
equation by an explicit and implicit Euler scheme. While the first approach results in
some known estimators, the second one produces new semi-parametric and pre-smoothed
Kaplan–Meier estimatorswhich are real distribution functions rather than sub-distribution
functions as the former ones are. This property of the new estimators is particular useful
if one wants to estimate the expected lifetime restricted to the support of the observation
time.

Specifically, we focus on estimation under the semi-parametric random censorship
model (SRCM), that is, a random censorship model where the conditional expectation of
the censoring indicator given the observation belongs to a parametric family. We show
that some estimated linear functionals which are based on the new semi-parametric
estimator are strong consistent, asymptotically normal, and efficient under SRCM. In a
small simulation study, the performance of the newestimator is illustrated undermoderate
sample sizes. Finally, we apply the new estimator to a well-known real dataset.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Lifetime or failure time data analysis is frequently based on incomplete observations where incompleteness is caused by
some type of censoring. To handle censored observations, certain assumptions about the underlying censoring mechanism
are necessary. One type of assumptions, which is widely accepted in practice, is described by the random censorship
model (RCM). Under this model, one has two independent sequences of independent and identically distributed (IID)
randomvariables: the survival timesX1, . . . , Xn and the censoring times Y1, . . . , Yn. These sequences define the observations
(Z1, δ1), . . . , (Zn, δn), where Zi = min(Xi, Yi) and δi indicates whether the observation time Zi is a survival time (δi = 1) or
a censoring time (δi = 0). Here we assume that these sequences are defined over some probability space (Ω, A, P), and we
denote the distribution functions (DF) of X, Y , and Z by F ,G, and H , respectively. Furthermore, we assume that all DFs are
continuous. Note that the continuity of H guarantees that the observation times Z1, . . . , Zn are almost surely distinct.

Nonparametric statistical inference of F under RCM is usually built on the time-honored Kaplan–Meier (KM) or product
limit estimator, see [18], defined by

FKM
n (t) = 1 −


i: Zi≤t


1 −

δi

n − Ri,n + 1


,

where Ri,n denotes the rank of Zi among the Z-sample.
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Besides other approaches, theKM-estimator can be derived fromproduct-integration. As pointed out byGill and Johansen
in their survey paper, see [15], the KM-estimator is the product integral corresponding to the Nelson–Aalen estimator of the
cumulative hazard function of F , see [22,1,17]. Precisely, the identifying Volterra type integral equation

F(t) =

 t

0
F̄(s−)


H̄(s−)H1(ds), (1)

where H1(s) = P(δ = 1, Z ≤ s), F̄(s) = 1 − F(s), and H̄(s) = 1 − H(s), is the starting point for this approach. Here F̄(s−)
and H̄(s−) denote the corresponding left-hand limits. Note that due to the assumed continuity of the DFs, it is not necessary
to take the left continuous version of the integrand in our setup. Therefore, we omit it in the text below.

Let 1A(x) ≡ 1(x ∈ A) be the indicator function of the set A, and denote by

Hn(t) =

n
i=1

1(Zi ≤ t)

n, H̄n(t) = 1 − Hn(t), H1

n (t) =

n
i=1

δi1(Zi ≤ t)

n

the empirical counterparts ofH , H̄ , andH1. Furthermore, wewill use F̂ to express a generic estimator of F . The Kaplan–Meier
estimator is then derived as the solution of the corresponding estimating equation

F̂(t) =

 t

0

¯̂F(s−)

H̄n(s−)H1

n (ds),

where ¯̂F(s−) and H̄n(s−) denote the corresponding left-hand limits. As stated in [15], this is simply the result of applying
an explicit Euler scheme with node points given by the ordered Z-sample, that is by Z1:n, . . . , Zn:n, for the approximated
numerical solution of the original identifying integral equation. Historically, the application of an Euler scheme to obtain an
approximate solution in product form of an initial value problem, or the equivalent Volterra integral equation, dates back
to Volterra [30].

We will now outline this approach using a particular representation of the integrating measure H1 in the identifying
Eq. (1). As pointed out in [8], H1 has a Radon–Nikodym density with respect to H , namely H1(dt) = m(t)H(dt), where
m(t) = E(δ | Z = t) is the conditional expectation of δ given Z = t . Therefore, we can rewrite Eq. (1) to get

F(t) =

 t

0
F̄(s)


H̄(s)m(s)H(ds) (2)

which gives the estimating equation

F̂(t) =

 t

0
(F̄(s)


H̄(s))n mn(s)Hn(ds),

where (F̄(s)

H̄(s))n and mn(s) are estimators of F̄(s)


H̄(s) andm(s), respectively. Note that

F̂(Zk:n) = F̂(Zk−1:n) +


]Zk−1:n,Zk:n]

(F̄(s)

H̄(s))n mn(s)Hn(ds). (3)

Substitute (F̄(s)

H̄(s))n with ¯̂F(Zk−1:n)


H̄n(Zk−1:n) in the integrand (explicit Euler scheme) to get

F̂(Zk:n) = F̂(Zk−1:n) +
¯̂F(Zk−1:n)


(nH̄n(Zk−1:n))mn(Zk:n),

for k = 1, . . . , n, and conclude

1 − F̂(Zk:n) =

1 − F̂(Zk−1:n)

 
1 −

mn(Zk:n)
n − k + 1


. (4)

Obviously, Eq. (4) yields the typical product form:

1 − F̂(Zk:n) =

k
i=1


1 −

mn(Zi:n)
n − i + 1


.

But we still have to specify mn to get the final estimator of F . This should be done using the available information about
m. If nothing is known besides RCM, we can only use δ(k:n), the associated indicator of Zk:n, to estimate m(Zk:n). In this case,
Eq. (4) is exactly the Kaplan–Meier estimator FKM

n . If we know, that m is a smooth function, we can use a nonparametric
estimator ofm, and get a pre-smoothed Kaplan–Meier estimator F PR

1,n, see [32,4]. We can also interpret (δ1, Z1), . . . , (δn, Zn)
as observations from a binary regression model, where the regression function is given by m. If we have good reasons to
assume that m belongs to a parametric family, that is,

m(t) = m(t, θ0),
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