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a b s t r a c t

We study partially linear single-index models where both model parts may contain high-
dimensional variables. While the single-index part is of fixed dimension, the dimension of
the linear part is allowed to grow with the sample size. Due to the addition of penalty
terms to the loss function in order to provide sparse estimators, such as obtained by
lasso or smoothly clipped absolute deviation, the construction of confidence intervals
for the model parameters is not as straightforward as in the classical low-dimensional
data framework. By adding a correction term to the penalized estimator a desparsified
estimator is obtained for which asymptotic normality is proven.We study the construction
of confidence intervals and hypothesis tests for such models. The simulation results show
that the method performs well for high-dimensional single-index models.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A partially linear single-indexmodel is a semi-parametric model which can be written as Y = η(Z⊤α)+X⊤β +ϵ, where
η is a one-dimensional unknown function and Z , X are covariate vectors of dimension p and q, respectively, such that the
mean zero random error ϵ is independent of (Z, X). The underlying idea is that when the linearity assumption may not be
valid for all covariates the introduction of an unknown function allows to overcome this problem. We focus on the high-
dimensional case where the number of covariates p + qmay exceed the sample size n. In this paper, we consider p as fixed
and allow q to grow with n.

We show how to construct a desparsified version of a penalized estimator of the high-dimensional parameters (α, β)
of the partially linear single-index model, and we establish the asymptotic distribution of this desparsified estimator.
The main purpose of desparsifying a penalized estimator that is obtained under the assumption of sparsity is that the
construction of confidence intervals becomes thus possible for all of the components of the parameter vector, also for the
ones asymptotically consistently estimated by zero due to the penalized estimation and which result in a point mass at
zero in the asymptotic distribution. van de Geer et al. [23] introduce such desparsified lasso estimators in the context
of linear and generalized linear models and obtain their asymptotically normal distribution. This is done by writing the
Karush–Kuhn–Tucker conditions which define the lasso estimator. It is then possible to find a de-biased lasso estimator and
to characterize its asymptotic distribution under suitable conditions including a stricter sparsity condition. The construction
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of confidence intervals for the model parameters is then straightforward. Note that for linear models, their method is the
same one as that from [31]. Javanmard and Montanari [10] also provide a desparsified estimator in the context of the linear
model. The main difference with the approach of van de Geer et al. [23] is that they do not make any assumption on the
sparsity level of the precision matrix.

Waldorp [24] used the desparsified lasso for comparing high-dimensional graphical models. He obtained desparsified
estimators for the coefficients of the precision matrices of the graphical models and constructed hypothesis tests based on
the asymptotic distribution of these estimators. Lu et al. [16] also used the desparsifying idea for constructing confidence
bands for a class of nonparametric sparse additive models.

The use of a single index as opposed to a full p-variate nonparametric function estimation effectively circumvents the
curse of dimensionality. In a low dimensional setting, the (partially linear) single-index model has been studied by Carroll
et al. [1], Horowitz [7], Xia et al. [28], Yu and Ruppert [29] and Xia andHärdle [27], among others. The fitting process involves
estimation of the parameters and of the unknown function η. Different fitting methods have been introduced, most of them
use kernel smoothing. Liang et al. [14] andWang et al. [25] used the local linear regression technique introduced by Fan and
Gijbels [4] to estimate η. The resulting estimators have good theoretical properties regarding consistency and convergence
rates. To deal with high dimensional covariate vectors, Liang et al. [14] used a smoothly clipped absolute deviation penalty
(SCAD, see [5]). They obtain a profile least-squares function to minimize, similarly to the linear model case. Ma and Zhu [17]
study such models under heteroscedasticity.

Our goal is to provide confidence intervals for the high-dimensional parameter vector in the partially linear single index
model and to determine which conditions (design, sparsity, etc.) are necessary to make this construction possible, the
challenging part being to be able to tackle the presence of the unknown function η. In a fixed dimension framework, Zhu
and Xue [32] introduced the empirical likelihood to construct confidence regions. Further, Zhang et al. [30] developed a
dimension reduction approach for estimation in a partially linear single-index model (PLSIM) with diverging number of
parameters in both the linear and the single-index part but needed the strong condition max(p, q) = o(n1/3) excluding the
p + q > n case. Our method for constructing confidence intervals and regions works in the high-dimensional framework
p + q > n with p fixed (potentially larger than n) and q growing with n.

First, in Section 2, we describe a method for estimating a partially linear single-index model. Our main results are
in Section 3 where we construct a desparsified estimator and study its asymptotic distribution. Section 4 describes the
construction of confidence intervals and regions together with ways to perform hypothesis testing following from the
theoretical study. Section 5 deals with computational choices. Further, Section 6 reports on simulation studies to assess
the finite sample performance of the desparsified estimator. In Section 7 we illustrate our method on a dataset to study the
Bardet–Biedl disease in a rat population. This disease is linked to genetic mutations and also affects humans, provoking
several dysfunctions. The dataset comprises of 120 observations and 200 variables. Section 8 concludes. All proofs are
contained in Section 9.

2. Estimation for partially linear single-index model

Let {(Yi, Zi, Xi), i = 1, . . . , n} be a sample generated by the partially linear single-index model
Y = η(Z⊤α0) + X⊤β0 + ϵ,

where η : R → R is an unknown differentiable function, ϵ ∼ N (0, σ 2
ϵ ), α0 ∈ Rp and β0 ∈ Rq are the regression parameters

and Z and X are, respectively, p-dimensional and q-dimensional covariate vectors. The error term ϵ and the covariates Z, X
are independent. For identifiability reason, we assume that ∥α0∥ = 1 and that the first non-zero entry of α0 is positive. We
consider p as fixed and allow q to grow with n. The case p + q > n corresponds to the high-dimensional data framework.
We denote by ξ = (α⊤, β⊤)⊤ the p + q− dimensional vector of parameters.

Several estimation approaches have been introduced in the literature. In this paper, we use the profile least-squares
procedure presented in [14]. For the paper to be self-contained, we here summarize the main ingredients. This approach
uses the local linear regression technique to estimate η, that is, an estimator of η(u) is obtained by the minimization of

n
i=1

{a + b(Z⊤

i α − u) + X⊤

i β − Yi}
2Kh(Z⊤

i α − u), (1)

with respect to a and b, where Kh(·) = h−1K(·/h), K(·) is a kernel function and h is a bandwidth. The minimizer (â, b̂) of (1)
is an estimator of (η(u), dη(u)/du). It can be shown (see [4]) that

η̂(u, ξ) = â =
K20(u, ξ)K01(u, ξ) − K10(u, ξ)K11(u, ξ)

K00(u, ξ)K20(u, ξ) − K 2
10(u, ξ)

,

where Kjl(u, ξ) =
n

i=1 Kh(Z⊤

i α − u)(Z⊤

i α − u)j(X⊤

i β − Yi)
l for j = 0, 1, 2 and l = 0, 1.

Now, for every data point, we have an estimator η̂(Z⊤

i α; ξ) of η(Z⊤

i α) and, in the low-dimensional case where p+q < n,
we can obtain a profile least-squares estimator ξ̂ = (α̂, β̂) by the minimization of

Q (α, β) =

n
i=1

{Yi − η̂(Z⊤

i α; ξ) − X⊤

i β}
2, (2)



Download English Version:

https://daneshyari.com/en/article/1145265

Download Persian Version:

https://daneshyari.com/article/1145265

Daneshyari.com

https://daneshyari.com/en/article/1145265
https://daneshyari.com/article/1145265
https://daneshyari.com

