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a b s t r a c t

Multivariate t mixture (TMIX) models have emerged as a powerful tool for robust mod-
eling and clustering of heterogeneous continuous multivariate data with observations
containing longer than normal tails or atypical observations. In this paper, we explicitly
derive the score vector and Hessian matrix of TMIX models to approximate the informa-
tion matrix under the general and three special cases. As a result, the standard errors of
maximum likelihood (ML) estimators are calculated using the outer-score, Hessian matrix,
and sandwich-type methods. We have also established some asymptotic properties under
certain regularity conditions. The utility of the new theory is illustrated with the analysis
of real and simulated data sets.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Finite mixture models (FMM) have become one of the most widely used statistical tools for modeling heterogeneous
multivariate data arisen from a wide range of research disciplines, such as statistical pattern recognition, econometrics,
bioinformatics, and biomedical sciences, to name just a few. For mathematical and computational convenience, the
multivariate Gaussian (normal) distribution is the most commonly assumed for mixture components. However, the
normality assumption is not always realistically applicable to any data sources. The estimates of component means,
variances and covariances, as well as the identification of clustering can be dramatically affected by observations that
exhibit atypically longer-than-normal tails inmultivariate Gaussianmixture (GMIX)models being fitted. To circumvent such
obstacles, Peel andMcLachlan [18] proposedmultivariate t mixture (TMIX)models and provided the expectation conditional
maximization (ECM) algorithm [16] for computing maximum likelihood (ML) estimates of parameters. Conceptually, the
TMIX model which, as the name suggests, imposes multivariate t distributions [13] for each component, has long been
recognized as a robust approach to handling population heterogeneity and heavy tails in multivariate data.

We say a p-dimensional random vector X follows a multivariate t distribution with location vector µ, positive definite
scale-covariance matrix 6 and degrees of freedom (DOF) ν, denoted by X ∼ tp(µ, 6, ν), if it has the probability density
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where ∆ = (x − µ)⊤6−1(x − µ). The DOF ν, which controls the thickness of the tails, is used to adjust robustness of
inference. Assume that y = {y1, . . . , yn} forms a p-dimensional random sample of size n arising from a population with g
subclasses C1, . . . , Cg . Each yj follows a g-component TMIX model, denoted by

f (yj; θ) =

g
i=1

πitp(yj; µi, 6i, νi), (2)

where πi (i = 1, . . . , g) are mixing proportions satisfying
g

i=1 πi = 1. The TMIX model defined in (2) includes the
GMIX model as a limiting case when νi → ∞ for all i. To prevent overfitting, it might be useful in practice to impose
some constraints on component parameters. Andrews et al. [2] introduced a ‘tClass’ family of four TMIX models defined
by constraining, or not, 6 and νi to be equal across components. They found in simulations that an appropriate tClass
model can be effectively determined by the penalized likelihood criteria such as Bayesian information criterion (BIC [19])
or integrated completed likelihood (ICL [5]). Moreover, their application to real data indicated that the constrained tClass
models with equal covariance matrices and/or equal DOF are more likely to be chosen. In a recent related work, Andrews
andMcNicholas [1] demonstrated in real-data examples that TMIXmodelswith constrained DOFmay yield better clustering
performance than the unconstrained ones.

Denote the uniqueparameters in each component by θi = (µ⊤

i , f ⊤

i , νi)
⊤, and the entire parameter by θ = {π, θi, . . . , θg},

where π = (π1, . . . , πg−1)
⊤ and fi contains distinct elements in 6i. Accordingly, the log-likelihood function of θ for a set of

observations y is

ℓ(θ; y) =

n
j=1

ln f (yj; θ). (3)

Owing to the complexity of the likelihood functionwhich involves logarithms of a sum, the task of obtaining the score vector
and Hessian matrix of (3) is tedious and challenging.

Recently, Boldea andMagnus [6] derived the score vector and Hessian matrix for the GMIXmodel in explicit expressions
and utilized the formulae to estimate the information matrix as well as the standard errors of parameters. For fitting the
TMIX models, so far the users must resort to the bootstrap technique [4,9] to calculate the standard errors. Unfortunately,
such a resampling procedure can be very time-consuming or even infeasible.

In this paper, we carry out analytical derivations of the score vector and Hessian matrix for the four members of tClass
models to estimate the information matrix. We offer the closed-form expressions of Hessian matrices under a general case
and three special cases, including (i) equal scale-covariancematrix, (ii) equal DOF, and (iii) equal scale-covariancematrix and
equal DOF. Having obtained these results, the variance–covariance matrix of ML estimators can be approximated by using
either the outer product of score vector, the Hessian matrix or the robust sandwich-type estimation procedure. In addition,
we investigate the asymptotic properties of ML estimators, which are useful for estimating the precision of parameters,
constructing confidence intervals, and undertaking the hypothesis testing.

The rest of this paper is structured as follows. In Section 2, we establish the notation. Section 3 formulates the main
theoretic result in Theorem 1 and presents three important special cases in Theorems 2–4. In Section 4, we discuss the es-
timation of variance–covariance matrix of ML estimators and study their asymptotic properties. An application to uranium
exploration data set is illustrated in Section 5. Section 6 conducts simulations to examine the finite-sample behavior of the
proposed methods. The performance is also compared with the bootstrap-based procedures. Section 7 ends this paper with
a short discussion. Proofs of the theoretical results are sketched in the supplemental material (see Appendix A).

2. Notation

Webegin by defining the notation to be used throughout the paper. Let vec(M) be the operator that vectorizes amatrix by
stacking its columns, and vec(v1, . . . , vg) be the operator that vectorizes a set of vectors {v1, . . . , vg} with possibly distinct
dimensions by stacking them in turn as a pooled columnvector. Since the component scale-covariance6i in (2) is symmetric,
we use fi = vech(6i) to denote the p(p+1)/2×1 vector that contains unique sub-diagonal elements in vec(6i). In addition,
we introduce a p2 × p(p + 1)/2 duplication matrix D such that

Dvech(6i) = vec(6i),

which uniquely transforms the half-vectorization of amatrix to its vectorization. Recall from (2) that themixing proportions
πi have to be all positive and sum to one. Let⊗ be the Kronecker product, whichmaps two arbitrarily dimensionedmatrices
into a larger matrix with a specific block structure. Because the differential of (1) involves the first-order and second-order
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