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h i g h l i g h t s

• We present a unified asymptotic framework for tapering multivariate spatial fields.
• Based on weak assumptions, the one-taper maximum likelihood estimator preserves the consistency of the untapered one.
• Prediction using tapering preserves asymptotically the mean squared prediction error.
• For prediction, the computationally attractive one-taper approach is sufficient.
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a b s t r a c t

Parameter estimation for and prediction of spatially or spatio-temporally correlated
random processes are used in many areas and often require the solution of a large linear
system based on the covariance matrix of the observations. In recent years, the dataset
sizes towhich thesemethods are applied have steadily increased such that straightforward
statistical tools are computationally too expensive to be used. In the univariate context,
tapering, i.e., creating sparse approximate linear systems, has been shown to be an efficient
tool in both the estimation and prediction settings. The asymptotic properties are derived
under an infill asymptotic setting. In this paper we use a domain increasing framework
for estimation and prediction using multivariate tapering. Under this asymptotic regime
we prove that tapering (one-tapered form) preserves the consistency of the untapered
maximum likelihood estimator and show that tapering has asymptotically the same mean
squared prediction error as using the corresponding untapered predictor. The theoretical
results are illustrated with simulations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Parameter estimation for and smoothing or interpolation of spatially or spatio-temporally correlated random processes
are used in many areas and often require the solution of a large linear system based on the covariance matrix of the obser-
vations. In recent years, the dataset sizes to which these methods are applied have steadily increased such that straight-
forward statistical tools are computationally too expensive to be used. For example, a typical Landsat 7 satellite image
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consists of more than 34 million pixels (30 m resolution for an approximate scene size of 170 km × 183 km; source
landsat.usgs.gov). Hence, classical spatial and spatio-temporal models for such data sizes cannot be handled with typical
soft- and hardware. Thus, one typically relies on approximation approaches. In the univariate context, tapering, i.e., creating
sparse approximate linear systems through a direct product of the presumed covariance function and a positive definite
but compactly supported correlation function, has been shown to be an efficient tool in both the estimation and prediction
settings.

The vast majority of the theoretical work on univariate tapering has been placed in an infill-asymptotic setting using
the concept of Gaussian equivalent measures and mis-specified covariance functions set forth in a series of papers by M.
Stein [32–35]. Subsequently, Furrer et al. [16], Kaufman et al. [21], Du et al. [13] and Wang and Loh [40] have assumed
a second-order stationary and isotropic Matérn covariance to show asymptotic optimality for prediction, consistency, and
asymptotic efficiency for estimation. Recently, Stein [38] has extended these results to other covariance functions by placing
appropriate conditions on the spectral density of the covariance.

In the infill-asymptotic setting, it is essentially sufficient to match the degree of differentiability at the origin of an
appropriately chosen taper function with the smoothness of the covariance at the origin. Loosely speaking, for prediction,
the predictor based on tapered covariances has the same convergence rate as the optimal predictor and the naive formula
for the prediction kriging variance has the correct convergence rate as well (Theorem 2.1 of [16], Theorem 1 of [38]).

For estimation, Kaufmanet al. [21] introduced the concept of one-taper and two-taper likelihood equations. In a one-taper
setting only the covariance is tapered while for two-tapered both the covariance and empirical covariance are affected. The
one-taper equation results in biased estimates while the two-taper equation is an estimating equation approach and is thus
unbiased. The price of unbiased estimates is a severe loss of the computational efficiency intended through tapering (see,
e.g., Table 2 of [21] or Fig. 2 of [31]).

Extending the idea of tapering to a multivariate setting is not straightforward. The infill-asymptotic setting does not
allow one to ‘embed’ the multivariate framework in a univariate one (e.g., as in [30] for Gaussian Markov random fields).
Ruiz-Medina and Porcu [29] introduced the concept of multivariate Gaussian equivalent measures, but the conditions are
difficult to verify and their practical applicability is not entirely convincing. Several authors have recently approached the
problemusing a increasing-domain setting [31,9]. Themain advantage of this alternative sampling scheme is thatwe are not
bound toMatérn type covariance functions nor to tapers that satisfy the taper condition (i.e., sufficiently differentiable at the
origin and at the taper length). More so, we will show that for collocated data, other practical tapers can be described. The
main disadvantage is the somewhat less-intuitive conceptual framework. For example, in the case of heavy metal contents
in sediments of a lake, infill-asymptotics can be mimicked by taking more and more measurements. In a increasing-domain
setting, this is not possible. On the other hand asymptotics is a theoretical concept and in practice only a finite number of
observations are available.

The main contributions of this paper are as follows: (i) under weak conditions on the covariance matrix function and the
taper matrix function form we show that in a increasing-domain framework the tapered maximum likelihood estimator
preserves the consistency of the untapered likelihood estimator; (ii) the difference between the (integrated) mean squared
prediction error of the tapered and the untapered converges in probability to zero, even when prediction is based on
estimated parameters. Note that although we require that the taper range increases, no rate assumption is necessary; (iii)
numerical simulations illustrate that the approach has very appealing finite sample properties, especially for predictionwith
plugin estimates we find only a very small loss in efficiency.

This paper is structured as follows: Section 2 introduces basic notation and relevant definitions. The main results are
given in Section 3. Section 4 illustrates the methodology using an extensive simulation study. Concluding remarks are given
in Section 5. Proofs and technical results are presented in the Appendix.

Note that compared with directly using compactly supported covariance functions, tapering has several advantages. Our
modeling experience has shown that the practical dependence structure is often larger or much larger than what can be
handled computationally and additional approximations would be needed anyway. We see tapering as a computational
approximation that does not alter the statistical model. The taper range, i.e., degree of tapering, depends on the availability
of memory and computing power and thus changes when the analysis is carried out on different computers or at some later
time with improved hardware.

2. Notation and setting

We denote vectors and matrices with bold lower and upper case symbols. Random variables and processes are denoted
with upper case symbols and random vectors and vector processes are denoted with bold upper case symbols. For x ∈ Rm,

we let |x| = maxi=1,...,m |xi| and ∥x∥ =

m
i=1 x

2
i .

The singular values of a n × n real matrix A = (aij) are denoted by ρ1(A) ≥ · · · ≥ ρn(A) ≥ 0 and, in the case when A is
symmetric, the eigenvalues are denoted by λ1(A) ≥ · · · ≥ λn(A). The spectral norm is given by ρ1(A) and ∥A∥

2
F =


i,j |aij|

2

denotes the Frobenius norm.
For a sequence of random variables Xn, we write Xn = op(1) when Xn converges to 0 in probability as n → ∞ and we

write Xn = Op(1) when Xn is bounded in probability as n → ∞.
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