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a b s t r a c t

This article concerns the tests for the equality of two location parameters when the data
dimension is larger than the sample size. Existing spatial-sign-based procedures are not
robust with respect to high dimensionality, producing tests with the type-I error rates that
aremuch larger than thenominal levels.Wedevelop a correction thatmakes the sign-based
tests applicable for high-dimensional data, allowing the dimensionality to increase as the
square of the sample size.We show that the proposed test statistic is asymptotically normal
under elliptical distributions and demonstrate that it has good size and power in a wide
range of settings by simulation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Assume that Xi1, . . . ,Xini ∈ Rp, i = 1, 2 are two independent random samples from p-variate distributions F1(x − µ1)
and F2(x− µ2) located at p-variate centers µ1 and µ2, with covariance matrices 61 and 62, respectively. We are concerned
about testing the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 ≠ µ2 (1)

for high-dimensional datawhich have dimension p that increases to infinity as the number of observations n tends to infinity.
The need of high-dimensional two-sample tests arises from various applications; see Chen and Qin [3] for some related
discussion.

Conventionally, we deal with this problem by using the famous Hotelling’s T 2 test statistic T 2
n = n1n2(X̄1−X̄2)

⊤S−1
n (X̄1−

X̄2)/n, where n = n1 + n2, X̄1 and X̄2 are the two sample means and Sn is the pooled sample covariance matrix. However,
the T 2

n cannot work for ‘‘large p, small n’’ cases, i.e., p > n. Some authors have suggested replacing Sn with either the identity
matrix or the diagonalmatrix of Sn. See Bai and Saranadasa [1], Srivastava andDu [10], Chen andQin [3], Srivastava et al. [11],
Feng et al. [5], Gregory et al. [6] and Feng et al. [4].

Statistical performances of the moment-based tests mentioned above would be degraded when the non-normality
is severe, especially for heavy-tailed distributions. Some authors considered using multivariate sign-and/or-rank-based
approaches to construct robust tests. Under traditional conditions with fixed p, the ‘‘inner centering and inner
standardization’’ sign-based procedure is often used (see Randles [9]; Oja [8]), i.e., using the test statistic Q 2

n =
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i Ûi, where U(x) = ∥x∥−1xI(x ≠ 0), Ûi = n−1
i

ni
j=1 Ûij and Ûij = U(�−1/2(Xij − µ̂)). µ̂ and � are the

Hettmansperger & Randles’s [7] estimates (HRE) of location and scatter matrix for the pooled sample, satisfying
2

i=1

ni
j=1

Ûij = 0 and pn−1
2

i=1

ni
j=1

ÛijÛ⊤

ij = Ip.

Of course, this test statistic is not applicable for the case of p > n either.
Recently, Wang et al. [13] and Feng et al. [4] proposed high-dimensional spatial-sign-based tests for the one-sample

and two-sample problems, respectively. The test statistic proposed in the former one is essentially in a similar fashion to
Chen and Qin’s [3] test statistic, it is but not directly applicable for the two-sample problem due to the bias from estimating
the location parameter. Feng et al. [4] further proposed a scalar-invariant test, which is particularly useful when different
components have different scales in high-dimensional data. To circumvent the difficulty of estimating additional biases
yielded by using the estimation of location parameter to replace the true one, they suggested a ‘‘leave-one-out’’ test statistic
which is computationally extensive, especially when n is not too small.

This work is a sequel to Feng et al. [4]; we propose a simpler test statistic and develop a bias correction to the proposed
statistic that makes it robust with respect to high dimensionality. The new test is much more computationally efficient
compared to Feng et al.’s [4] method. Simulation comparisons show that our procedure has good size and power for a wide
range of dimensions, sample sizes and distributions. Finite-sample studies also demonstrate that the proposed method
works reasonably well when the underlying distribution is not elliptical. We describe in detail the proposed method in
Section 2, and investigate its numerical performance in Section 3. Technical details are included in the Appendix which is
presented in the Supplementary Material (see Appendix B).

2. Spatial-sign-based high-dimensional tests

2.1. Model, assumptions and existing works

Let {Xi1, . . . ,Xini}, i = 1, 2 be two independently and identically distributed (i.i.d.) random vectors det(6i)
−1/2fi(∥6

−1/2
i

(x − µi)∥), i = 1, 2. Denote εij = 6
−1/2
i (Xij − µi) and uij = U(εij). The module ∥εij∥ and the direction uij are independent.

Furthermore, the direction vector uij is uniformly distributed on the p-dimensional unit sphere. Clearly, E(uij) = 0 and
cov(uij) = p−1Ip.

Motivated by HRE (Hettmansperger & Randles [7]), Feng et al. [4] suggested a simplified version of HRE without
considering the off-diagonal elements of the covariance matrix. Denote Di = diag(di1, . . . , dip), i = 1, 2, where dij is
the jth diagonal element of 6i. We find the estimates of µi and Di, (µ̂i, D̂i), which satisfy

1
ni

ni
j=1

U(ϵij) = 0 and
p
ni
diag

 ni
j=1

U(ϵij)U(ϵij)
⊤


= Ip, (2)

where ϵij = D̂−1/2
i (Xij − µ̂i). A recursive algorithm was developed to solve these equation. Feng et al. [4] proposed the

following test statistic

Rn = −
1

nin2

n1
i=1

n2
j=1

U⊤(D̂−1/2
1,i (X1i − µ̂2,j))U(D̂−1/2

2,j (X2j − µ̂1,i)),

where µ̂i,j and D̂i,j are the corresponding location vectors and scattermatrices using ‘‘leave-one-out’’ samples {Xik}k≠j. Under
H0 the expectation of Rn is asymptotically negligible compared to its standard deviation. This facilitates the construction of
the test, because there is no need to estimate its expectation. However, the calculation of Rn is of order O(pn3), and thus this
procedure is computationally complex when ni is large.

2.2. The proposed test

To overcome the drawback of Rn and make the spatial-sign-based test more feasible for large n situations, we suggest
the following test statistic

Tn = −
1

n1n2

n1
i=1

n2
j=1

U⊤(D̂−1/2
1 (X1i − µ̂2))U(D̂−1/2

2 (X2j − µ̂1)),

where µ̂i and D̂i, i = 1, 2, are the estimators of the location parameters and diagonal matrices using (2) with the samples
{Xij}

ni
j=1. That is, we use the two entire samples to estimate the location parameters µ1 and µ2 rather than the ‘‘leave-one-

out’’ samples as in Rn. In contrast to Rn, this scalar-transformation-invariant test statistic requires only O(n2p) computation.
Its asymptotic null distribution is summarized in Theorem 1 given below.
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