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a b s t r a c t

A definition of qualitative robustness for point estimators in general statistical models
is proposed. Some criteria for robustness are established and applied to estimators in
parametric, semiparametric, and nonparametricmodels. In specific nonparametricmodels,
the proposed definition boils down to Hampel robustness. It is also explained how plug-in
estimators in certain nonparametricmodels can be reasonably classifiedw.r.t. their degrees
of robustness.
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1. Introduction

Let (Θ, dΘ) be a metric space, where Θ will be regarded as a parameter space. Let (Ω,F ) be a measurable space, and
Pθ be any probability measure on (Ω,F ) for every θ ∈ Θ . The set Ω can be seen as the sample space, where the sample
is drawn from Pθ with (unknown) θ ∈ Θ . As usual, the triplet (Ω,F , {Pθ : θ ∈ Θ}) will be referred to as statistical
model. Further, let (Σ, S) be a measurable space and for every n ∈ N let Tn : Θ → Σ be any map, where Tn andΣ can be
regarded as an aspect function and the state space of the aspect function, respectively. For every n ∈ N, letTn : Ω → Σ be
any (F , S)-measurable map, which can be seen as an estimator for the aspect Tn(θ) of θ . Often the sample space and the
estimator can be written as

(Ω,F ) = (EN, E⊗N) and Tn(x) = Tn(x1, . . . , xn) for all x = (x1, x2, . . .) ∈ Ω (1)
for some measurable space (E, E), which is virtually the standard statistical setting, but this particular form will not be
assumed here. Finally, let ρ be any metric on the set M1(Σ) of all probability measures on (Σ, S).

The following definition proposes a notion of (qualitative) robustness for the sequence of estimators (Tn) which is in
line with Hampel’s notion of (qualitative) robustness. Note that the aspect functions Tn, n ∈ N, do not play any role in the
definition. They will only occur again in Section 2.

Definition 1.1. For any subsetΘ0 ⊂ Θ we use the following terminology.
(i) The sequence (Tn) is said to be (dΘ , ρ)-robust onΘ0 if for every θ1 ∈ Θ0 and ε > 0 there is some δ > 0 such that

θ2 ∈ Θ0, dΘ(θ1, θ2) ≤ δ H⇒ ρ(Pθ1 ◦T−1
n , Pθ2 ◦T−1

n ) ≤ ε for all n ∈ N. (2)
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(ii) The sequence (Tn) is said to be asymptotically (dΘ , ρ)-robust on Θ0 if for every θ1 ∈ Θ0 and ε > 0 there are some
δ > 0 and n0 ∈ N such that

θ2 ∈ Θ0, dΘ(θ1, θ2) ≤ δ H⇒ ρ(Pθ1 ◦T−1
n , Pθ2 ◦T−1

n ) ≤ ε for all n ≥ n0. (3)

(iii) The sequence (Tn) is said to be finite-sample (dΘ , ρ)-robust on Θ0 if for every θ1 ∈ Θ0, ε > 0, and n0 ∈ N there is
some δ > 0 such that

θ2 ∈ Θ0, dΘ(θ1, θ2) ≤ δ H⇒ ρ(Pθ1 ◦T−1
n , Pθ2 ◦T−1

n ) ≤ ε for all 1 ≤ n ≤ n0. (4)

On the one hand, Definition 1.1 is close to Hampel’s definition of robustness in the context of nonparametric statistical
models. Indeed, letting specifically Θ := Θ0 := M1(E) be the set of all probability measures on some complete and
separable metric space E (equipped with any metric dΘ generating the weak topology), (Ω,F ) be as in (1), Tn be as in
(1) and invariant against permutations of the arguments, Pµ := µ⊗N for all µ ∈ Θ,Σ := Rd, and ρ be the Prohorov
metric, then part (i) of Definition 1.1 coincides with the definition of robustness as given in Section 4 of [14]. Cuevas [9] put
forward Hampel’s nonparametric theory by replacing Rd by a general complete and separable metric spaceΣ . Krätschmer
et al. [16,17] consideredmetrics thatmetrize finer topologies than theweak topology, and Zähle [26] allowed for lawsPµ that
are not necessarily infinite product measures (for a different approach for nonparametric estimators based on dependent
observations, see [3,6,8,20,24]). The distinction between asymptotic and finite-sample robustness was implicitly also done
in [9,14]. Huber [15] and other authors (e.g. [16,17,19]) regraded robustness simply as asymptotic robustness. Examples for
robust estimators in nonparametric statistical models range from sample trimmedmeans [14] to L-estimators [15] to Z- and
M-estimators [14,15] to R-estimators [15] to support vector machines [13].

On the other hand, Definition 1.1 allows for more statistical models (Ω,F , {Pθ : θ ∈ Θ}) than the one just discussed.
In many classical examples of the theory of point estimation the parameter spaceΘ is a subset of Rk (and not the measure
spaceM1(E)). The underlying statistical model has indeed often the shape (EN, E⊗N, {Pθ : θ ∈ Θ}) for some subsetΘ ⊂ Rk.
If Pθ = µ⊗N

θ for some µθ ∈ M1(E), θ ∈ Θ , then this model corresponds to the standard situation where one can observe
the realizations of i.i.d. E-valued random variables with distribution µθ but the true k-dimensional parameter vector θ is
unknown; this setting is known as infinite product model. Robustness of the distribution of a given estimator w.r.t. small
changes of the underlyingmodel associatedwith θ is an obvious quality criterion, but it is not uniquewhat the ‘‘right’’ notion
of robustness is. In thementioned infinite product model, for instance, a ‘‘change’’ of the underlyingmodel can bemeasured
in at least two ways. First, one may measure a change of θ w.r.t. the Euclidean distance on Θ . Second, one may measure a
change of the probability measure µθ w.r.t. any metric on {µθ : θ ∈ Θ} which metrizes the relative weak topology. The
former approach is not covered by Hampel’s theory, but it is covered by Definition 1.1 and seems to be more natural in the
context of classical parametric models (as, for instance, the Gaussian model where µθ := Nm,s2 for θ = (m, s2) ∈ Θ :=

R × (0,∞)). The latter approach basically leads to a version of Hampel’s definition when regarding Θ := {µθ : θ ∈ Θ} as
the parameter space. But strictly speaking this approach is neither covered by the existing literature due to the traditional
assumption Θ = M1(E). Definition 1.1, on the other hand, is more flexible and makes the second approach possible too.

Apart from the situation where Θ ⊂ Rk (‘‘parametric model’’), the parameter space Θ is often the product of a subset
of Rk and a subset of M1(E) (‘‘semiparametric model’’). This is the case, for instance, in some parametric regression models,
ARMA models, and so on. Then a change of the underlying model should be measured by any metric which metrizes the
product topology onΘ . In this situation the classical definition of robustness does not apply again, but Definition 1.1 does.

The preceding discussion shows that Definition 1.1 is suitable not only for nonparametric statistical models but also for
parametric and semiparametric statistical models. In this sense, this article treats a rather general setting and facilitates
more examples than the existing literature on robustness in nonparametric statistical models.

The article is organized as follows. Section 2 provides some criteria for asymptotic and finite-sample robustness in
the fashion of the celebrated Hampel theorem. Section 3 is devoted to examples, and Section 4 provides the proofs of
the results of Section 2. In Section 3.1, we investigate plug-in estimators in nonparametric statistical models being more
general compared to [9,14,16,26], and we classify plug-in estimators on Euclidean spaces w.r.t. their degrees of robustness.
Section 3.2 provides results on robustness for estimators in dominated parametric statistical models, and Section 3.3 is
devoted to robustness of a Yule–Walker-type estimator in the semiparametric statistical model of a linear process. The
Introduction will be completed with some basic remarks on Definition 1.1.

Remark 1.2. When the metric ρ is fixed, then (dΘ , ρ)-robustness of (Tn) is clearly equivalent to (d′
Θ , ρ)-robustness of (Tn)

for any other metric d′
Θ which is equivalent to dΘ . �

Remark 1.3. Of course, the sequence (Tn) is robust on Θ0 if and only if it is both asymptotically and finite-sample robust
on Θ0, and finite-sample robustness already holds when in (4) the phrase ‘‘for all 1 ≤ n ≤ n0’’ is replaced by ‘‘for n = n0’’.
Moreover, (dΘ , ρ)-robustness of (Tn) onΘ0 means that the set of mappings

Θ −→ M1(Σ), θ −→ Pθ ◦T−1
n : n ∈ N


is (dΘ , ρ)-equicontinuous onΘ0. �
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