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a b s t r a c t

We consider estimation of the inverse scatter matrices Σ−1 for high-dimensional ellipti-
cally symmetric distributions. In high-dimensional settings the sample covariance matrix
S may be singular. Depending on the singularity of S, natural estimators ofΣ−1 are of the
form a S−1 or a S+ where a is a positive constant and S−1 and S+ are, respectively, the in-
verse and the Moore–Penrose inverse of S. We propose a unified estimation approach for
these two cases and provide improved estimators under the quadratic loss tr(Σ̂−1

−Σ−1)2.
To this end, a new and general Stein–Haff identity is derived for the high-dimensional el-
liptically symmetric distribution setting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of covariance and inverse covariance matrices in a high-dimensional framework has seen a surge of
interest in the past years. Of these, estimates of the inverse covariance matrix are required in many multivariate inference
procedures including the Fisher linear discriminant analysis, confidence intervals based on the Mahalanobis distance,
optimal portfolio selection, graphicalmodels, andweighted least squares estimator inmultivariate linear regressionmodels.
Estimation of the precision matrix in the classical multivariate setting has been studied by Efron and Morris [12], Haff [21],
Dey [9], Krishnamoorthy and Gupta [24], Dey et al. [10], Zhou et al. [43], and Tsukuma and Konno [42].

The natural estimator of the inverse covariance matrix, based on the sample covariance matrix, is well known to be
inadequate in the high-dimensional context. When the dimension is of the same order of the sample size the sample
covariance matrix becomes unstable and has large estimation error. It is also well known that the eigenvalues of sample
covariance matrix are over-dispersed, that is, the eigenvalues of sample covariance matrix are not good estimators of their
population counterpartMarčenko and Pastur [33]. Additionally, in the settingwhere the dimension of the sample covariance
matrix is larger than the sample size, the inverse of the sample covariancematrix does not exist. An estimator of the precision
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matrix for the multivariate normal distribution based on the Moore–Penrose generalized inverse of the sample covariance
matrixwas developed in Kubokawa and Srivastava [27]. Kubokawa and Inoue [25] consider general types of ridge estimators
for covariance and precision matrices, and derive asymptotic expansions of their risk functions. More generally, the idea to
correct (shrink) the eigenvalues of the sample covariance matrix is also found in previous work by Ledoit and Wolf [29],
El Karoui [14], Ledoit and Wolf [30] and Donoho [11]. The problem has been examined under many sparsity scenarios, for
example, zero elements of the matrix [2,13,38,6] or its inverse [34,20,37,28,7,36], bandedness [3,4] among others.

Most of the results for improved estimation for covariance and inverse covariance matrices have been developed in the
context of the multivariate normal distribution. In this article we consider a large subclass of the elliptically contoured
distributions. Let (X,U) = (X,U1, . . . ,Un) be n + 1 p-dimensional random vectors having an elliptically symmetric
distribution with joint density of the form
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where X and the Ui’s are p × 1 vectors, θ is a p × 1 unknown location vector, S = UU⊤ is a p × p matrix and Σ is a
p×p unknown scatter matrix proportional to the covariance matrix. In the following, Eθ,Σ will denote the expectation with
respect to the density in (1.1) and E∗

θ,Σ the expectation with respect to the density
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is the normalizing constant which is assumed to be finite. Note that these two expectations are related since, for any
integrable function H(X,U), we have
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The general model in (1.1) has been considered by various authors, for more details, see Fourdrinier, Strawderman and

Wells [19] where the model is viewed as the canonical form of the general linear model. For more on elliptically symmetric
distributions and the various choices of f (·) in (1.1) see Bilodeau and Brenner [5] and Fang, Kotz, and Ng [15]. The class
in (1.1) contains models such as the multivariate normal, t-, and Kotz-type distributions. In the setting of the multivariate
normal distribution, since F = f , we have Eθ,Σ = E∗

θ,Σ . Improved estimation of the scatter matrix for elliptical distribution
models, from a decision theoretic point of view, has been considered by Fang and Li [16], Fang and Li [32], Leung and Ng [31],
and Tsukuma [41].

In this article, we consider estimation of the inverse scatter matrixΣ−1 in (1.1) under the quadratic loss

L(Σ̂−1,Σ−1) = tr

(Σ̂−1

−Σ−1)2

, (1.6)

where Σ̂−1 estimatesΣ−1 and tr(M) denotes the trace of a matrixM . By definition, the risk of Σ̂−1 is

R(Σ̂−1,Σ−1) = Eθ,Σ [L(Σ̂−1,Σ−1)]. (1.7)

When S is invertible (p ≤ n), the ‘‘usual’’ estimators are of the form a S−1 for some positive constant a. Tsukuma [41]
showed that there exists a∗ such that, a∗S−1 is unbiased where

a∗ = a0
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where a0 = n − p − 1 and S = UU⊤. Note that for the normal distribution, a∗ = a0.
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