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a b s t r a c t

Motivated to automatically partition predictors into a linear part and a nonlinear part
in partially linear single-index models (PLSIM), we consider the estimation of a partially
linear single-index model where the linear part and the nonlinear part involves the same
set of covariates. We use two penalties to identify the nonzero components of the linear
and index vectors, which automatically separates covariates into the linear and nonlinear
part, and thus solves the difficult problem of model structure identification in PLSIM. We
propose an estimation procedure and establish its asymptotic properties, which takes into
account constraints that guarantee identifiability of the model. Both simulated and real
data are used to illustrate the estimation procedure.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The partially linear single-index model (PLSIM) is a very flexible class of semiparametric models given by

Y = g(W Tα)+ ZTβ + ϵ, (1)
where W and Z are two different sets of covariates, and ϵ is the noise with E(ϵ|W , Z) = 0, E(ϵ2

|W , Z) = σ 2(W , Z). The
popularity of (1) can be attributed to its dimension reduction ability to avoid fitting amultivariate nonparametric regression
function. It contains single-index models (when β = 0) [8,6,12] and partially linear models (when W is a scalar) [3,13,7]
as special cases. However, in practice, PLSIM met with the problem of having to determine a priori which covariates make
up W and which make up Z . In many works, including Carroll et al. [1] and Xia and Härdle [17], what has been done is
to put discrete predictors in Z and continuous ones in W . While it might be a reasonable attempt when no other obvious
alternatives exist, this practice is worrisome with no formal justification. Although specification of a linear part in PLSIM
can result in more efficient estimation (root-n convergence rate) and a more easily interpretable model, which are the main
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motivations of using PLSIM, this practical difficulty has prevented its applicability in many situations. Thus it is important
to investigate whether there is a principled way to deal with the model specification problem.

An extended version of PLSIM was first proposed in [18] which uses W and Z together in both the linear part and the
nonlinear part of (1), resulting in

Y = g(XTα)+ XTβ + ϵ, (2)

where X = (W T , ZT )T = (X1, . . . , Xp)
T contains all p predictors. Compared to the single-index model, the extra linear

component XTβ makes the model more flexible. It is also a special case of additive-index models with only two indices and
one of the components is assumed to be linear. The two constraints ∥α∥ = 1 with its first nonzero component positive, and
αTβ = 0 are sufficient tomake themodel identifiable [18,11], although it causes some additional burden in estimation aswe
see below. However, (2) gets rid of the headache of partitioning the covariates. When α = (α(1)T , 0)T and β = (0, β(2)T )T

(here α(1) is s-dimensional, say, and β(2) is (p − s)-dimensional), then the extended PLSIM reduces to (1) (note that we
automatically have αTβ = 0 in this case). The key observation is that if the true model is indeed in the form of (1) and if
we can identify the zero components in α and β in (2), the predictors are automatically separated into a linear part and a
nonlinear part. More formally, we say a covariate Xj has linear effect if Xj only appears in the linear part and nonlinear effect
otherwise (in particular, if Xj appears in both nonlinear and linear part we still say it has nonlinear effect).

As an immediate consequence of our asymptotic results later, if the truemodel is of the form (1),wewill be able to recover
it with probability approaching one by starting from the extended model (2) and adding variable selection mechanism. In
this respect, the purpose of the current study is reminiscent of that of Zhang et al. [21], where structure identification in
partially linear additive models is the goal. In that paper, the authors started with general additive models and attempted
to shrink the component functions both to zero functions and to linear functions (using two penalties respectively), with
the latter achieved by decomposing each component function as a sum of a linear function and another nonlinear function
orthogonal to the linear function. Shrinking the nonlinear function to zero will make the final estimate linear. However,
in partially linear single-index models, as we discussed above, identification of partially linear structure can be achieved
in a much more direct way. Superficially, the formulated problem is very similar to the problem studied in [10]. However,
the approach taken by Liang et al. [10] requires correct specification of the linear and nonlinear part. On the contrary, our
approach can overcome this limitation byuncovering the true partially linear structure automatically. Note that only variable
selection in extended PLSIM can produce the effect ofmodel structure identification as a by-product, while variable selection
for the usual PLSIM (as previously considered in [10]) does not achieve this goal obviously. Mathematically, the constraint
αTβ = 0 need to be taken into account for theoretical analysis and empirical implementation, which makes our analysis
more complicated.

Variable selection via penalization has become very popular in recent years, starting from the pioneering work of
Tibshirani [14] which introduced lasso. In this paper, we use the smoothly clipped absolute deviation (SCAD) penalty which
possesses the oracle property. Other penalties could be used such as adaptive lasso penalty [22] or MCP [20], which is
expected to possess similar theoretical and numerical properties. The rest of the article is organized as follows. In Section 2,
we consider estimation procedure of the penalized extended PLSIM. We also present asymptotic theoretical properties of
our estimator. Computational issues are discussed in Section 3. In Section 4, simulations and a real data application are
presented to illustrate the numerical property of the proposed model. We conclude our study in Section 5.

2. Penalized extended PLSIM

We assume X = (X1, . . . , Xp) can be partitioned into four groups X = (X (1), X (2), X (3), X (4))T and the true model is

Yi = g(X (1,2)T
i α)+ X (1,3)T

i β + ϵi,

where X (1,2)
i = (X (1)T

i , X (2)T
i )T and X (1,3)T

i = (X (1)T
i , X (3)T

i )T . This setup is actually more general than model (1), and thus if
the truemodel is really (1), separation of the linear and index covariateswill be achieved by trying to recover the truemodel.
For notational simplicity, we assume the partition obeys the original order of the list of predictors. That is, X (1) is composed
of the first p1 predictors in X , X (2) the next p2 elements in X , etc., with of course

4
j=1 pj = p. Here α = (α(1)T , α(2)T )T is

(p1 + p2)-dimensional and β = (β(1)T , β(3)T )T is (p1 + p3)-dimensional. Thus in the true model, predictors in X (4) are not
related to responses. X (2) only appears in the nonlinear part, X (3) only appears in the linear part, and X (1) appears in both.
If X (1) is empty, then the true model is indeed in the form of (1). Thus the true model we consider is actually more general
than that presented in (1).

In general, the true model structure (that is how the predictors are partitioned) is unknown. So one must start from the
extended PLSIM (2). The two constraints ∥α∥ = 1 (with first nonzero component positive) and αTβ = 0 in effect reduce
the number of parameters from 2p to 2p − 2. To take into account the first constraint, we use the popular ‘‘delete-one-
component’’ method [19,15,2]. Without loss of generality, we assume the first component of α, α1 is positive, and thus we
canwrite α = ((1−∥α̃∥2)1/2, α2, . . . , αp)

T where α̃ = (α2, . . . , αp)
T is α without the first component. Similarly we denote

β̃ = (β2, . . . , βp)
T . Due to the second constraint, we have β1 = α−11 (

p
j=2 αjβj) = (1− ∥α̃∥2)−1/2(

p
j=2 αjβj). Thus (α, β)
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