
Journal of Multivariate Analysis 143 (2016) 107–126

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Inference for high-dimensional differential correlation
matrices✩

T. Tony Cai, Anru Zhang ∗

Department of Statistics, The Wharton School, University of Pennsylvania, United States

a r t i c l e i n f o

Article history:
Received 21 November 2014
Available online 11 September 2015

AMS 2010 subject classification:
primary 62H12
secondary 62F12

Keywords:
Adaptive thresholding
Covariance matrix
Differential co-expression analysis
Differential correlation matrix
Optimal rate of convergence
Sparse correlation matrix
Thresholding

a b s t r a c t

Motivated by differential co-expression analysis in genomics, we consider in this paper
estimation and testing of high-dimensional differential correlation matrices. An adap-
tive thresholding procedure is introduced and theoretical guarantees are given. Minimax
rate of convergence is established and the proposed estimator is shown to be adaptively
rate-optimal over collections of paired correlationmatrices with approximately sparse dif-
ferences. Simulation results show that the procedure significantly outperforms two other
natural methods that are based on separate estimation of the individual correlation matri-
ces. The procedure is also illustrated through an analysis of a breast cancer dataset, which
provides evidence at the gene co-expression level that several genes, of which a subset has
been previously verified, are associated with the breast cancer. Hypothesis testing on the
differential correlation matrices is also considered. A test, which is particularly well suited
for testing against sparse alternatives, is introduced. In addition, other related problems,
including estimation of a single sparse correlation matrix, estimation of the differential
covariance matrices, and estimation of the differential cross-correlation matrices, are also
discussed.

Published by Elsevier Inc.

1. Introduction

Statistical inference on the correlation structure has a wide array of applications, ranging from gene co-expression
network analysis [10,21,33,12,14] to brain intelligence analysis [26]. For example, understanding the correlations between
the genes is critical for the construction of the gene co-expression network. See [19,20], and [14]. Driven by these and other
applications in genomics, signal processing, empirical finance, and many other fields, making sound inference on the high-
dimensional correlation structure is becoming a crucial problem.

In addition to the correlation structure of a single population, the difference between the correlation matrices of two
populations is of significant interest. Differential gene expression analysis is widely used in genomics to identify disease-
associated genes for complex diseases. Conventional methods mainly focus on the comparisons of the mean expression
levels between the disease and control groups. In some cases, clinical disease characteristics such as survival or tumor stage
do not have significant associations with gene expression, but theremay be significant effects on gene co-expression related
to the clinical outcome [27,16,1]. Recent studies have shown that changes in the correlation networks from different stages
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of disease or from case and control groups are also of importance in identifying dysfunctional gene expressions in disease.
See, for example, [11]. This differential co-expression network analysis has become an important complement to the original
differential expression analysis as differential correlations among the genes may reflect the rewiring of genetic networks
between two different conditions (see [27,1,11,17,13]).

Motivated by these applications, we consider in this paper optimal estimation of the differential correlation matrix.
Specifically, suppose we observe two independent sets of p-dimensional i.i.d. random samples X(t)

= {X(t)
1 , . . . ,X(t)

nt }

with mean µt , covariance matrix Σt , and correlation matrix Rt , where t = 1 and 2. The goal is to estimate the
differential correlation matrix D = R1 − R2. A particular focus of the paper is on estimating an approximately sparse
differential correlation matrix in the high dimensional setting where the dimension is much larger than the sample sizes,
i.e., p ≫ max(n1, n2). The estimation accuracy is evaluated under both the spectral norm loss and the Frobenius norm
loss.

A naive approach to estimating the differential correlation matrix D = R1 − R2 is to first estimate the covariance
matrices Σ1 and Σ2 separately and then normalize to obtain estimators R̂1 and R̂2 of the individual correlation matrices
R1 and R2, and finally take the difference D̂ = R̂1 − R̂2 as the estimator of the differential correlation matrix D. A simple
estimate of a correlation matrix is the sample correlation matrix. However, in the high-dimensional setting, the sample
correlation matrix is a poor estimate. Significant advances have been made in the last few years on optimal estimation
of a high-dimensional covariance matrix. Regularization methods such as banding, tapering, and thresholding have been
proposed. In particular, Cai et al. [8] established the optimal rate of convergence and Cai and Yuan [7] developed an adaptive
estimator of bandable covariance matrices. For sparse covariance matrices where each row and each column has relatively
few nonzero entries, Bickel and Levina [4] introduced a thresholding estimator and obtained rates of convergence; Cai and
Liu [5] proposed an adaptive thresholding procedure and Cai and Zhou [9] established theminimax rates of convergence for
estimating sparse covariance matrices.

Structural assumptions on the individual correlation matrices R1 and R2 are crucial for the good performance of the
difference estimator. These assumptions, however, may not hold in practice. For example, gene transcriptional networks
often contain the so-called hub nodes where the corresponding gene expressions are correlated with many other gene
expressions. See, for example, [3,2]. In such settings, some of the rows and columns of R1 and R2 have many nonzero entries
whichmean that R1 and R2 are not sparse. In genomic applications, the correlationmatrices are rarely bandable as the genes
are not ordered in any particular way.

In this paper, we propose a direct estimation method for the differential correlation matrix D = R1 − R2 without first
estimating R1 and R2 individually. This direct estimation method assumes that D is approximately sparse, but otherwise
does not impose any structural assumptions on the individual correlation matrices R1 and R2. An adaptive thresholding
procedure is introduced and analyzed. The estimator can still perform well even when the individual correlation matrices
cannot be estimated consistently. For example, direct estimation can recover the differential correlation network accurately
even in the presence of hub nodes in R1 and R2 as long as the differential correlation network is approximately sparse. The
key is that sparsity is assumed for D and not for R1 or R2.

Theoretical performance guarantees are provided for direct estimator of the differential correlation matrix. Minimax
rates of convergence are established for the collections of paired correlationmatriceswith approximately sparse differences.
The proposed estimator is shown to be adaptively rate-optimal. In comparison to adaptive estimation of a single sparse
covariancematrix considered in Cai and Liu [5], both the procedure and the technical analysis of ourmethod are different and
more involved. Technically speaking, correlation matrix estimators are harder to analyze than those of covariance matrices
and the two-sample setting in our problem further increases the difficulty.

Numerical performance of the proposed estimator is investigated through simulations. The results indicate significant
advantage of estimating the differential correlation matrix directly. The estimator outperforms two other natural
alternatives that are based on separate estimation of R1 and R2. To further illustrate the merit of the method, we apply
the procedure to the analysis of a breast cancer dataset from the study by van de Vijver et al. [30] and investigate the
differential co-expressions among genes in different tumor stages of breast cancer. The adaptive thresholding procedure is
applied to analyze the difference in the correlation alternation in different grades of tumor. The study provides evidence at
the gene co-expression level that several genes, ofwhich a subset has been previously verified, are associatedwith the breast
cancer.

In addition to optimal estimation of the differential correlation matrix, we also consider hypothesis testing of the
differential correlation matrices, H0 : R1 − R2 = 0 vs. H1 : R1 − R2 ≠ 0. We propose a test which is particularly well
suited for testing again sparse alternatives. The same ideas and techniques can also be used to treat other related problems.
We also consider estimation of a single sparse correlation matrix from one random sample, estimation of the differential
covariance matrices as well as estimation of the differential cross-correlation matrices.

The rest of the paper is organized as follows. Section 2 presents in detail the adaptive thresholding procedure for
estimating the differential correlationmatrix. The theoretical properties of the proposed estimator are analyzed in Section 3.
In Section 4, simulation studies are carried out to investigate the numerical performance of the thresholding estimator and
Section 5 illustrates the procedure through an analysis of a breast cancer dataset. Hypothesis testing on the differential
correlation matrices is discussed in Section 6.1, and other related problems are considered in the rest of Section 6. All the
proofs are given in the Appendix.
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