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a b s t r a c t

High-throughput expression profiling techniques bring novel tools and also statistical
challenges to genetic research. In addition to detecting differentially expressed genes,
testing the significance of gene sets or pathway analysis has been recognized as an equally
important problem. Owing to the ‘‘large p small n’’ paradigm, the traditional Hotelling’s
T 2 test suffers from the singularity problem and therefore is not valid in this setting. In
this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample
and two-sample cases. We also suggest several different ways to derive the approximate
null distribution under different scenarios of p and n for our proposed shrinkage-based
test. Simulation studies show that the proposed method performs comparably to existing
competitors when n is moderate or large, but it is better when n is small. In addition,
we analyze four gene expression data sets and they demonstrate the advantage of our
proposed shrinkage-based diagonal Hotelling’s test.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

DNA microarrays allow us to acquire thousands or tens of thousands of gene expression values simultaneously, which
introduces novel approaches to genetic research. One important goal of analyzing gene expression microarray data is
to detect differentially expressed genes. Recently, biologists and medical scientists have also recognized that testing the
significance of gene sets or pathway analysis is an equally important problem [10,20,5,17]. Specifically, if we want to know
whether a certain gene set, Z , is significantly differentially expressed in two different treatments, A and B, the testing
hypothesis is H0 : µZA = µZB, where µZA and µZB are the mean vectors of Z in A and B, respectively. In statistics,
this is essentially a two-sample multivariate testing problem. One classical method used to solve such testing problems
is Hotelling’s T 2 test [13], which is a generalization of Student’s t test. This method works when the sample size, n, is larger
than the data dimension, p. More generally, in a k-sample experiment, we are interested in whether or not there exist some
differences among the k mean vectors of populations.

In this paper, we focus on one-sample and two-samplemultivariate testing problems for high-dimensional small sample
size data, or equivalently, for ‘‘large p small n’’ data. In such settings, Hotelling’s T 2 test suffers from a singularity problem
in the covariance matrix estimation and therefore is not valid in this setting. To overcome the singularity problem, some
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remedies have been proposed in the literature; see, for example, the non-exact significance test and the randomization
test in [6]. These approaches, however, are known to perform poorly in practice due to their complicated estimation of the
degrees of freedom and some related issues [1]. In recent years, a number of approaches to improve Hotelling’s T 2 test have
emerged for testing high-dimensional data. In essence, these approaches can be classified into the following three categories,
with the main difference among them how the covariance matrix is handled:

(1) In the first category, the covariance matrix is removed from Hotelling’s T 2 statistic to avoid the covariance matrix
estimation. This ideawas first consideredbyBai and Saranadasa [1]. Specifically, theyproposed to use (X̄1−X̄2)

T (X̄1−X̄2)
to replace (X̄1 − X̄2)

TS−1(X̄1 − X̄2) in Hotelling’s T 2 statistic, where X̄1 and X̄2 are the sample mean vectors and S is the
pooled sample covariance matrix. They demonstrated that the proposed test has better power than Hotelling’s T 2 test
under the requirement of p and n being of the same order. Recently, Zhang and Xu [37] and Chen and Qin [5] extended
this method to ‘‘large p small n’’ data. We refer to the methods in this category as the unscaled Hotelling’s tests.

(2) In the second category, a regularization method is applied to the covariance matrix estimation to resolve the singularity
problem. In this direction, Chen et al. [4] have made a major contribution. They proposed a regularized Hotelling’s T 2

test that estimates the covariance matrix by S+ λIp, where Ip is the identity matrix and λ > 0 is a shrinkage parameter.
This test works for both p < n and p ≥ n cases. Note that a similar method was also proposed in [25], where the form of
λS + (1 − λ)Ip is used to estimate the covariance matrix with 0 ≤ λ < 1. In the special case of λ = 0, the test reduces
to an unscaled Hotelling’s test. We refer to the methods in this category as the regularized Hotelling’s tests.

(3) In the third category, the covariance matrix is assumed to be diagonal. Under this assumption, the singularity problem
is circumvented since a diagonal matrix is always invertible for non-zero entries, whether or not p is larger than n. This
idea was first considered by Wu, Genton and Stefanski [35] and then revisited by several other researchers; see, for ex-
ample, [28,27,22,29]. For more details, see Section 2.1. These methods are essentially all the same and we refer to them
as the diagonal Hotelling’s tests.

In our simulation studies, we note that the unscaled Hotelling’s tests are often sensitive to the deviation of equal
eigenvalues of the covariancematrix. If one eigenvalue is extremely large, then the performance of the testwill be dominated
by that individual component and thus a lower power will result. For more details, see the simulation studies in Section 4.
In addition, even for the case of equal eigenvalues, Chen and Qin [5] suggested n = [20 log(p)] to have a reasonably large
power. For instance, n needs to be at least 46, 92 and 138 for p = 10, 100 and 1000, respectively. For high-dimensional data
such as gene expression microarray data, however, it is not uncommon that n is very small, say for example less than 10
samples per group [23,8]. This has motivated researchers to consider more realistic testing methods for high-dimensional
small sample size data, e.g., the regularized Hotelling’s tests and the diagonal Hotelling’s tests. Our additional simulation
studies indicate that the existing regularized Hotelling’s tests do not perform comparably to the diagonal Hotelling’s tests
when n is relatively small.

In view of the good performance of the diagonal Hotelling’s tests, we also assume that the covariance matrix is diagonal
in this paper. Beforemoving forward, we note that this diagonal covariancematrix assumption has been commonly used for
high-dimensional small sample size data, e.g., [9,3,32]. In particular, Bickel and Levina [3] pointed out that if the estimated
correlations are all very noisy, then we are probably better off without estimating them. This, in essence, is the assumption
of a diagonal covariance matrix when n is relatively small. In discriminant analysis, Lee et al. [16] have also observed that
discriminant rules with an inverse generalizedmatrixmay not perform aswell as diagonal discriminant rules formicroarray
data. Although very promising, the performance of the diagonal Hotelling’s tests themselves can be suboptimal due to the
unreliable estimates of the sample variances from the limited number of observations. This suggests that some modifica-
tions to the diagonal Hotelling’s tests are necessary to further improve their performance. We note that one such attempt
has already been made by Dinu et al. [7]. They proposed a modified diagonal Hotelling’s test, called ‘‘SAM-GS’’, by adding
a small constant to each gene-specific variance estimate to stabilize the variance estimation, an idea originated in the SAM
test of Tusher, Tibshirani and Chu [33].

In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. The
test is structured by replacing the sample variances in the diagonal Hotelling’s tests by the optimal shrinkage estimation of
variances in [32]. For the proposed shrinkage-based test, we then consider several different ways to derive the approximate
null distribution under different scenarios of p and n. Simulation results show that the proposed method always performs
comparably to existing competitors, especially when n is less than 10. In addition, to assess the performance of the proposed
method using real data, we consider four gene expression data sets. A case study also demonstrates the advantage of the
proposed shrinkage-based diagonal Hotelling’s test. The remainder of the paper is organized as follows. The shrinkage-based
diagonal Hotelling’s tests are introduced in Section 2. In Section 3, we derive both a scaled chi-squared null distribution and
a normal null distribution. Simulation studies and real data analysis are conducted in Sections 4 and 5, respectively.

2. Improving the diagonal Hotelling’s tests

Let Xi = (Xi1, . . . , Xip)
T , i = 1, . . . , n, be independent and identically distributed (i.i.d.) random vectors from a multi-

variate normal distribution, Np(µ, 6), where µ is the population mean vector and 6 is the population covariance matrix.
Let also X̄ =

n
i=1 Xi/n be the sample mean vector and S =

n
i=1(Xi − X̄)(Xi − X̄)T/(n − 1) be the sample covariance
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