
Journal of Multivariate Analysis 143 (2016) 185–193

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Bayesian analysis of multivariate stable distributions using
one-dimensional projections
Mike G. Tsionas
Economics Department, Lancaster University Management School, LA1 4YX, UK

a r t i c l e i n f o

Article history:
Received 14 March 2015
Available online 30 September 2015

AMS subject classifications:
60E07
11K45
60E10

Keywords:
Multivariate stable distributions
Spectral measure
Markov Chain Monte Carlo
Bayesian inference

a b s t r a c t

In this paper we take up Bayesian inference in general multivariate stable distributions.
We exploit the representation of Matsui and Takemura (2009) for univariate projections,
and the representation of the distributions in terms of their spectral measure. We present
efficient MCMC schemes to perform the computations when the spectral measure is
approximated discretely or, as we propose, by a normal distribution. Appropriate latent
variables are introduced to implement MCMC. In relation to the discrete approximation,
we propose efficient computational schemes based on the characteristic function.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Univariate stable distributions have been thoroughly studied in econometrics, statistics and finance over the past few
decades [31]. Their empirical application is still hampered by the fact that their density is not available in analytic form,
despite advances in Bayesian computation using MCMC. Buckle [3] and Tsionas [32] provided Gibbs sampling schemes
for general and symmetric stable distributions, respectively. The problem is that the conditional posterior distributions of
certain latent variables are cumbersome toworkwith and require careful tuning. The analogous problem in themultivariate
case is exceedingly difficult although a few attempts have been made to solve it. The impediment is that multivariate
stable distributions, unlike the univariate case, are defined through their spectral measureswhich, in practice, are unknown.
Ravishanker and Qiou [30] for example, proposed an EM algorithm based on Buckle [3] in the case of symmetric isotropic
stable distributions but this class is too narrow to be of empirical importance. It is defined by the transformation X = µ+Cξ ,
where ξ is a vector of independent random variables each one distributed as standard symmetric stable, µ is a vector of
location parameters, Σ is a scale matrix, and C⊤C = Σ . It is known that the class of elliptical stable distributions can be
defined through the transformation X = µ+RCuwhere u is uniformly distributed on the unit sphere Sd−1

= {x ∈ Rd
|∥x∥ =

1}, C is a d×d scalematrix of full rank, and R =

VSα/2 where, independently, V ∼ χ2

d and Sα/2 follows a stable distribution
with parameter α/2 andmaximal skewness β = 1. Of course not all multivariate stable distributions are elliptical. See [14].
When V ∼ χ2

1 the distribution of X is in the class of elliptically contoured stable distributions [24, p. 2].
In connection with multivariate stable Paretian distributions, even the computation of the characteristic functions

becomes complicated because they are only defined through their spectral measure, an object that is needed in order to
retain the equivalence between the density and the characteristic function. The estimation of the spectral measure itself has
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proved itself to be quite cumbersome even for bivariate distributions (see the seminal works of McCulloch [17,19], Nolan
et al. [25], and Nolan and Rajput [26]).

The present paper is related to recent advances in the econometrics of stable distributions. Dominicy and Veredas [8]
propose a method of quantiles to fit symmetric stable distributions. Since the quantiles are not available in closed form they
are obtained using simulation resulting in the method of simulated quantiles or MSQ. Hallin et al. [10] propose an easy-
to-implement R-estimation procedure which remains consistent contrary to least squares with stable disturbances. Broda
et al. [2] propose a new stable mixture GARCH model that encompasses several alternatives and can be extended easily to
themultivariate asset returns case using independent components analysis. Ogata [27] uses a discrete approximation to the
spectral measure of multivariate stable distributions and proposes estimating the parameters by equating the theoretical
and empirical characteristic function in a generalized empirical likelihood/GMM framework.

Relative to this work, we show how to implement Bayesian inference for multivariate stable distributions by providing
statistical inferences about the spectral measure jointly with the other parameters of the model. For numerical analysis via
MCMC we employ a novel data augmentation technique for stable distributions. We use a discrete approximation of the
measure where the configuration and the number of points are unknown. We also propose a novel approximation to the
spectral measure based on a multivariate normal distribution.

2. Stable distributions

A randomvariable X is called strictly (univariate) stable if for all n,
n

i=1 Xi ∼ cnX for some constant cn, where X1, . . . , Xn

are independently distributed with the same distribution as X . It is known that the only possible choice is to have cn = n1/α

for some α ∈ (0, 2]. General non-symmetric stable distributions are defined via the log characteristic function which is
given by the following expression [31,36]:

logϕ(τ) = log E exp(ιτX)

=


ιµτ − |στ |α


1 − ιβsgn(τ ) tan

πα

2


, α ≠ 1

ιµτ − σ |τ |


1 + ιβsgn(τ )

2
π

log |τ |


, α = 1,

(1)

where τ ∈ R, µ and σ are location and scale parameters, α is the characteristic exponent, β ∈ [−1, 1] is the skewness
parameter, and ι =

√
−1. In this paper we are interested in multivariate stable distributions, that is distributions of a

random variable in Rd. Suppose X is a vector of random variables with characteristic exponent α ∈ (0, 2]. Its characteristic
function is ϕX (τ) = E exp{ι⟨τ, X⟩) = exp (−IX (τ)+ ι⟨τ , µ⟩)where ⟨τ, X⟩ = τ⊤X denotes inner product, and

IX (τ) =


Sd−1

ψα (⟨τ, s⟩)Γ (ds), (2)

where Sd−1
=

u ∈ Rd

|⟨u, u⟩ = 1

is the boundary of the unit ball in Rd, Γ is a finite Borel measure of the vector X , called

the spectral measure, µ ∈ Rd is a vector of location parameters, and the complex function ψ is defined as follows:

ψα(u) =


|u|α


1 − ιsgn(u) tan

πα

2


, α ≠ 1,

|u|

1 + ι

2
π
sgn(u) log |u|


, α = 1.

(3)

See seminal work by Nolan [24], Nolan and Rajput [26], Abdul-Hamid and Nolan [1], and also Cambanis and Miller [5],
and Nagaev [22]. Notably the parameters (α,Γ ) fully define all centered multivariate stable distributions, and a skewness
parameterβ is not needed1 in this case, sincewehave the fullmeasure,Γ .We denote the class byX ∼ Sα,d(µ,Γ ). Press [29]
attempted to define a multivariate α-stable distribution without using the spectral measure Γ . Later on Paulauskas [28]
provided some corrections as not all α-stable distributions can be represented using Press’ [29] characteristic function.
Cheng and Rachev [6] is an interesting paper where the authors provided estimates of the spectral measure as well as
applications to a stable portfolio. It is notable that the projection of X on τ , viz. ⟨τ, X⟩ has a univariate stable distribution. The
characteristic exponent α remains the same but scale, location and skewness depend on τ. The multivariate characteristic
function is not easy to work with as in the univariate case because of the dependence on the spectral measure. As this can
rarely be specified in advance, it is necessary to provide posterior inferences about it, in the context of Bayesian analysis.

One approach [4] is to assume that Γ can be approximated by a discrete measure, in which case we have:

Γ (ds) =

J
j=1

γjδ{s(j)}(ds), (4)

1 Actually, there are skewness parameters β(τ) that depend on the particular projection τ.
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