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a b s t r a c t

A central limit theorem for bilinear forms of the type a∗ĈN (ρ)−1b, where a, b ∈ CN

are unit norm deterministic vectors and ĈN (ρ) a robust-shrinkage estimator of scatter
parametrized by ρ and built upon n independent elliptical vector observations, is pre-
sented. The fluctuations of a∗ĈN (ρ)−1b are found to be of order N−

1
2 and to be the same

as those of a∗ŜN (ρ)−1b for ŜN (ρ) a matrix of a theoretical tractable form. This result is ex-
ploited in a classical signal detection problem to provide an improved detector which is
both robust to elliptical data observations (e.g., impulsive noise) and optimized across the
shrinkage parameter ρ.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As an aftermath of the growing interest for large dimensional data analysis in machine learning, in a recent series of
articles [14,15,13,32,17], several estimators from the field of robust statistics (dating back to the seventies) started to be
explored under the assumption of commensurably large sample (n) and population (N) dimensions. Robust estimators
were originally designed to turn classical estimators into outlier- and impulsive noise-resilient estimators, which are of
considerable importance in the recent big data paradigm. Among these estimation methods, robust regression was studied
in [17] which reveals that, in the large N, n regime, the difference in norm between estimated and true regression vectors
(of size N) tends almost surely to a positive constant which depends on the nature of the data and of the robust regressor. In
parallel, and of more interest to the present work, Couillet et al. [14,15], Couillet and McKay [13], Zhang et al. [32] studied
the limiting behavior of several classes of robust estimators ĈN of scatter (or covariance) matrices CN based on independent
zero-mean elliptical observations x1, . . . , xn ∈ CN . Precisely, Couillet et al. [14] show that, letting N/n < 1 and ĈN be the
(almost sure) unique solution to

ĈN =
1
n

n
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under some appropriate conditions over the nonnegative function u (corresponding to Maronna’s M-estimator [24]),
∥ĈN − ŜN∥

a.s.
−→ 0 in spectral norm as N, n → ∞ with N/n → c ∈ (0, 1), where ŜN follows a standard random matrix

model (such as studied in [29,12]). In [32], the important scenario where u(x) = 1/x (referred to as Tyler’s M-estimator)
is treated. It is in particular shown for this model that for identity scatter matrices the spectrum of ĈN converges weakly to
the Marc̆enko–Pastur law [23] in the large N, n regime. Finally, for N/n → c ∈ (0, ∞), Couillet and McKay [13] studied yet
another robust estimation model defined, for each ρ ∈ (max{0, 1 − n/N}, 1], by ĈN = ĈN(ρ), unique solution to

ĈN(ρ) = (1 − ρ)
1
n

n
i=1

xix∗

i
1
N x

∗

i Ĉ
−1
N (ρ)xi

+ ρIN . (1)

This estimator, proposed in [27], corresponds to a hybrid robust-shrinkage estimator reminding Tyler’s M-estimator of
scale [30] and Ledoit–Wolf’s shrinkage estimator [22]. This estimator is particularly suited to scenarios where N/n is
not small, for which other estimators are badly conditioned if not undefined. For this model, it is shown in [13] that
supρ ∥ĈN(ρ) − ŜN(ρ)∥

a.s.
−→ 0 where ŜN(ρ) also follows a classical randommatrix model.

The aforementioned approximations ŜN of the estimators ĈN , the structure of which is well understood (as opposed to ĈN

which is only defined implicitly), allow for both a good apprehension of the limiting behavior of ĈN and more importantly
for a better usage of ĈN as an appropriate substitute for sample covariance matrices in various estimation problems in
the large N, n regime. The convergence in norm ∥ĈN − ŜN∥

a.s.
−→ 0 is indeed sufficient in many cases to produce new

consistent estimation methods based on ĈN by simply replacing ĈN by ŜN in the problem defining equations. For example,
the results of Couillet et al. [15] led to the introduction of novel consistent estimators based on functionals of ĈN (of the
Maronna type) for power and direction-of-arrival estimation in array processing in the presence of impulsive noise or
rare outliers [11]. Similarly, in [13], empirical methods were designed to estimate the parameter ρ which minimizes the
expected Frobenius norm tr[(ĈN(ρ)− CN)2], of interest for various outlier-prone applications dealing with non-small ratios
N/n.1

Nonetheless, when replacing ĈN for ŜN in deriving consistent estimates, if the convergence ∥ĈN − ŜN∥
a.s.

−→ 0 helps in
producing novel consistent estimates, this convergence (which comes with no particular speed) is in general not sufficient
to assess the performance of the estimator for large but finite N, n. Indeed, when second order results such as central limit
theorems need to be established, say at rate N−

1
2 , to proceed similarly to the replacement of ĈN by ŜN in the analysis, one

would ideally demand that ∥ĈN − ŜN∥ = o(N−
1
2 ); but such a result, we believe, unfortunately does not hold. This constitutes

a severe limitation in the exploitation of robust estimators as their performance as well as optimal fine-tuning often rely on
second order performance. Concretely, for practical purposes in the array processing application of Couillet [11], one may
naturally ask which choice of the u function is optimal to minimize the variance of (consistent) power and angle estimates.
This question remains unanswered to this point for lack of better theoretical results.

The main purpose of the article is twofold. From a technical aspect, taking the robust shrinkage estimator ĈN(ρ) defined
by (1) as an example, we first show that, although the convergence ∥ĈN(ρ) − ŜN(ρ)∥

a.s.
−→ 0 (from [13, Theorem 1]) may not

be extensible to a rate O(N1−ε), one has the bilinear form convergence N1−εa∗(Ĉk
N(ρ) − ŜkN(ρ))b

a.s.
−→ 0 for each ε > 0, each

a, b ∈ CN of unit norm, and each k ∈ Z. This result implies that, if
√
Na∗ŜkN(ρ)b satisfies a central limit theorem, then so

does
√
Na∗Ĉk

N(ρ)b with the same limiting variance. This result is of fundamental importance to any statistical application
based on such quadratic forms. Our second contribution is to exploit this result for the specific problem of signal detection in
impulsive noise environments via the generalized likelihood-ratio test, particularly suited for radar signals detection under
elliptical noise [10,27]. In this context, we determine the shrinkage parameter ρ which minimizes the probability of false
detections and provide an empirical consistent estimate for this parameter, thus improving significantly over traditional
sample covariance matrix-based estimators.

The remainder of the article introduces our main results in Section 2 which are proved in Section 3. Technical elements
of proof are provided in the Appendix.

Notations: In the remainder of the article, we shall denote λ1(X), . . . , λn(X) the real eigenvalues of n × n Hermitian
matrices X . The norm notation ∥ · ∥ being considered is the spectral norm for matrices and Euclidean norm for vectors. The
symbol ı is the complex

√
−1.

2. Main results

Let N, n ∈ N, cN , N/n, and ρ ∈ (max{0, 1 − c−1
N }, 1]. Let also x1, . . . , xn ∈ CN be n independent random vectors

defined by the following assumptions.

1 Other metrics may also be considered as in e.g. [31] with ρ chosen to minimize the return variance in a portfolio optimization problem.



Download English Version:

https://daneshyari.com/en/article/1145300

Download Persian Version:

https://daneshyari.com/article/1145300

Daneshyari.com

https://daneshyari.com/en/article/1145300
https://daneshyari.com/article/1145300
https://daneshyari.com

