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a b s t r a c t

The protein structure prediction problem is considered to be the holy grail of bioinformat-
ics, and circular variables in protein structure problem are ubiquitous. For example, con-
formational angles appear in γ turns, α helices, and β sheets. It is well known that dihedral
angles (φ and ψ) together with ω (torsion angle of the peptide bond) and χ (torsion an-
gle of the side chain) are considered to be important for protein structure prediction since
they define the entire conformation of a protein. In order to study k conformational angles,
we need a k-variate angular distribution. In this paper, we propose a multivariate circu-
lar distribution and inferential methods, which could be useful for jointly modeling those
circular variables of interest. Our proposed family of k-variate circular distributions and
testing methods are applied to trivariate circular data set arising from γ turns consisting
of Glycine–Phenylalanine–Threonine sequences. We have shown that there is a three-way
dependent relationship between theφ,ψ andχ , and that the side chain angles are relevant
to the relationship between dihedral angles for the given sequence. The proposed model
was comparedwith two existingmultivariate circularmodels using bivariate and trivariate
circular data sets.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Proteins are linear polymers of the 20 common amino acid residues. Different combinations and different lengths
constitute different proteins. An amino acid is made up of a central carbon atom called the C-alpha to which is bonded
an amine group, a carboxyl group, a hydrogen atom and a side chain. The torsion angle of the bond between N of the amine
group and C-alpha is denoted by φ and that between C of carboxyl group and C-alpha is denoted by ψ , while that of the
side chain is designated by χ . Condensation of the carboxyl group of one amino acid and the amine group of another results
in formation of the peptide bond, whose torsion angle is called ω. The protein structure prediction problem is considered
to be the holy grail in bioinformatics. One way to tackle this problem is homology modeling based on the idea that similar
amino acid residue sequences may have similar protein structures. The problem states ‘‘How to predict the exact three
dimensional structure of a protein from its one dimensional amino acid residue sequence?’’ The covalent structure of a
polypeptide chain is not sufficient to determine its three dimensional structure, due to the possibility of different rotations
about the many covalent bonds. Three-dimensional structures that differ only in this way are referred to as conformations.
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The conformation of the polypeptide backbone is defined by the torsion angles φ, ψ , and ω of each residue. The study of
these angles in proteins is relevant in the prediction of the three dimensional structure from the sequence of its amino
acid residues. One of the common secondary structures of the protein is known as the γ turn, which implies a trivariate
circular distribution of the dihedral angles φ, ψ and χ . It is important to investigate if the side chain angles χ are relevant
to the relationship between the main chain angles, φ and ψ [2]. In this paper, we illustrate our methods using 334 γ turns
consisting of Glycine–Phenylalanine–Threonine sequences.

When studying multi-dimensional circular random variables, it is often difficult to directly visualize the surfaces
pertaining to their multivariate densities. It is often the case that it is easier to introspect about the nature of the univariate
circular marginal and conditional circular distributions, and use them to build a suitable multivariate circular model. One of
our motivations in this paper is to describe the probability distribution on the hypertorus. We propose a family of k-variate
circular models with specified marginals, which is equivalent to adopting Sklar’s theorem [15] of the theory of copulas [10].
The new family of distributions can be considered as amultivariate extension of the bivariate family of circular distributions
given inWehrly and Johnson [16]. One attractive property of the newmodel is that one can study k circular variables, where
a given set of k − m circular variables is mutually independent. A multivariate circular distribution as an extension to the
von Mises (vM) distribution was presented in Mardia et al. [9]. They proposed estimation and hypothesis testing methods
and illustrated the utility of their model using protein data of dihedral angles in γ turns. Advantages of our model over
their model are discussed in Section 4. Another multivariate circular distribution was proposed by Fernandez-Duran and
Gregorio-Dominguez [4], which is a multivariate extension of the univariate model proposed in Fernandez-Duran [3]. A
method of constructing bivariate joint circular density from prescribed conditionals can be found in the Appendix.

In the next section, we propose a newmultivariate circular distribution and present some of its properties, and statistical
inferential methods. In Section 3, we compare our proposed model with the multiple nonnegative trigonometric sums
(MNTS) model [4] and Mardia’s model [9] using two real data sets; one bivariate and one trivariate cases. In Section 4,
we discuss advantages of the new model over the Mardia’s model, along with concluding remarks.

2. Methods

2.1. k-variate circular distribution

Wehrly and Johnson [16] generated a family of bivariate circular distributions with the joint pdf of the form

f (θ1, θ2) = 2π · g [2π{F1(θ1)± F2(θ2)}] f1(θ1)f2(θ2), (2.1)

where −π < θ1, θ2 ≤ π , g , f1 and f2 are densities on the circle, and F1 and F2 are the distribution functions of f1 and
f2, respectively. The density (2.1) has f1 and f2 as its specified marginal densities. The model can be used with any desired
marginal densities. For example, Shieh and Johnson [13] studied distributions and inferential questions regarding the family
of bivariate distributions of the form (2.1), with von Mises (vM) marginals. Shieh et al. [14] studied the family of bivariate
distributions of the form (2.1) with generalized von Mises (GvM) marginals, together with associated inferences. In both
papers, a vM distribution for g(·)was assumed.

We propose a family of multivariate extensions of the Wehrly and Johnson [16] model in the following theorem.

Theorem 2.1. (a) The following is a k-variate circular density function

f (θ) = (2π)m
m
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where θ ∈ (−π, π]
k, 1 ≤ m ≤ k − 1, the f ′
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(b) The density has the property that, θm+1, . . . , θk are jointly independent.
(c) For j = 1, . . . ,m, the conditional density of θj given θj+1, . . . , θk is given by

f (θj|θj+1, . . . , θk) = 2π · gj
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Assuming that gj is a von Mises density, (2.3) has one parameter, the concentration parameter κ , for testing conditional
independence of θj given θj+1, . . . , θk.
(d) For j = 1, . . . ,m, the conditional density of θj given θ1, . . . , θj−1, θj+1, . . . , θk is given by

f (θj|θ1, . . . , θj−1, θj+1, . . . , θk) = (2π)j
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