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a b s t r a c t

Sparse reduced rank regression achieves dimension reduction and variable selection simul-
taneously. In this paper, for a class of nonconvex penalties, we give sufficient conditions
that guarantee the oracle estimator is a local minimizer and stronger conditions that guar-
antee it is a global minimizer, with probability tending to one in an ultra-high dimensional
setting. We carry out simulations to investigate the performance of the estimator. A real
data set is analyzed for illustration.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Yi = (Yi1, . . . , YiK )⊤ and Xi = (Xi1, . . . , Xip)
⊤, i = 1, . . . , n, be the response and the covariate vectors, respectively,

where K ≤ p. We allow K and p to depend on the sample size n to deal with high dimensional cases. The generative model
is

Yik = X⊤

i β∗

k + ϵik,

for i = 1, . . . , n and k = 1, . . . , K , where ϵik are independent random variables with mean 0 and variance σ 2
k . Let B

∗
=

(β∗

1 , . . . , β
∗

K ) be the p×K matrix of the true regression coefficients. Without further constraint, this multivariate regression
model can be estimated by the least squares procedure which reduces to apply least squares regression for each response
separately. Reduced rank regression [1,16] assumes that rank(B) ≤ r for some positive integer r . Since such a low-rank
matrix B can be written as DA⊤ where D and A are a p × r and a K × r matrix respectively, the rank constraint implies only
r linear combinations of the p-dimensional predictors (the r columns of XD) suffice to predict the responses. Thus reduced
rank regression is an effective dimension reductionmethod inmultivariate regression. In practice, selection of r can be done
by cross-validation or some information criteria. In this paper we assume r is known in our theoretical investigations and
we give discussions about the choice of r in practice. Due to the reduced number of parameters, the estimated reduced rank
regression is a more efficient estimator than the unrestricted estimator [2].

When p is large, it is desirable to remove those predictors that do not ‘‘explain’’ any of the responses from the regression
model. Sparse penalized variable selection methods such as that uses the lasso penalty (least absolute shrinkage and
selection operator, Tibshirani [22]), the SCAD penalty (smoothly clipped absolute deviation, Fan and Li [14]), or the MCP

∗ Correspondence to: Department of Statistics, Seoul National University, Seoul, Republic of Korea.
E-mail address: ydkim0903@gmail.com (Y. Kim).

http://dx.doi.org/10.1016/j.jmva.2015.09.023
0047-259X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2015.09.023
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2015.09.023&domain=pdf
mailto:ydkim0903@gmail.com
http://dx.doi.org/10.1016/j.jmva.2015.09.023


384 H. Lian, Y. Kim / Journal of Multivariate Analysis 143 (2016) 383–393

(minimax concave penalty, Zhang [23]) have received much attention recently. A penalized estimator for reduced rank
regression is defined as

B = argminB:rank(B)≤r∥Y − XB∥2
+ 2n

p
j=1

Jλ(∥Bj∥), (1)

with penalty Jλ, where λ is a tuning parameter and Bj is the jth row of B. Here Y is the n × K matrix whose ith row vector is
Yi and X is the n× pmatrix whose ith row vector is Xi. ∥ · ∥ is the square root of the sum of squares of all entries, also called
the Frobenius norm for matrices. Bunea et al. [7] and Chen and Huang [11] considered properties of the sparse reduced rank
estimator with the lasso penalty and the adaptive lasso penalty, respectively. Other related works include Chen et al. [8,10];
She [21]. However, none of these demonstrated the oracle property of the sparse reduced-rank estimator. Here, by oracle
property we mean the estimator (local minimizer or global minimizer of the objective function) is asymptotically the same
as the oracle estimatorBo which is defined asBo

= argminB∥Y − XB∥2,

subject to ∥Bj∥ = 0 for j ∈ S(B∗)c and rank(B) ≤ r , where S(B) = {j : ∥Bj∥ > 0} for a given p × K matrix B. That is, the
oracle estimator is the least square estimator subject to rank constraint when the zero rows of B∗ are known in advance.

The aim of this paper is to prove that Pr(B = Bo) → 1, whereB is the global minimizer of Q (B) = ∥Y − XB∥2
+

2n
p

j=1 Jλ(∥Bj∥) with rank(B) ≤ r . An easier problem is to investigate whetherBo is a local minimizer of Q (B), which we
also address.

However, for high-dimensional models, it is difficult to consider B. Instead, we work with a nonconvex penalized
estimator with sparsity constraint defined as follows. Let u be a given positive integer which serves as an upper bound of
the number of nonzero coefficients. A nonconvex penalized estimator for reduced rank regression with sparsity constraint
is defined as

Bu = argminB:rank(B)≤r,|S(B)|≤u∥Y − XB∥2
+ 2n

pn
j=1

Jλ(∥Bj∥). (2)

Sparsity constrained estimators are considered by most of literatures of the oracle property on high dimensions including
Chen and Chen [9]; Kim and Kwon [18]; Kim et al. [19]; Zheng et al. [25]. In particular, the sparse constraint allows us to
lower bound ∥X(B − B∗)∥2/∥B − B∗

∥
2 by the smallest sparse eigenvalue of X⊤X/n (see (B1) for the definition) if S(B) ≤ u.

When p > n, the smallest eigenvalue of X⊤X/n is zero but the sparse eigenvalue can be positive under mild assumptions,
and thus is popularly used high-dimensional regression [4,3]. Of course we haveBu = B if u is larger than S(B), but S(B) is
not available before we obtain the estimator and thus it is more natural to directly impose this sparsity constraint. We are
to prove Pr(Bu =Bo) → 1 under regularity conditions.

A main difficulty in proving the oracle property is that the parameter space is not convex due to the rank constraint. That
is, even though rank(B1) ≤ r and rank(B2) ≤ r , it is not necessarily true that rank(B1 +B2) ≤ r . Hence, standard techniques
to prove the oracle property cannot be applied directly.

The paper is organized as follows. In Section 2, a class of penalties and computational algorithmare explained. In Section 3,
the proofs of local and global oracle properties are given. In addition, the selection of r is discussed. Numerical results are
given in Section 4 and conclusion follows in Section 5.

2. Nonconvex penalties and computational algorithm

We consider the class of nonconvex penalties which satisfy the following condition:

(A1) Let ∇λ(·) be the derivative of the penalty Jλ(·). Then, ∇λ(·) is nonnegative, nonincreasing and continuous on (0, ∞).
∇λ(0+) = λ and there exists a > 0 such that ∇λ(t) = 0 when |t| ≥ aλ. Finally, there is a constant ν such that
Jλ(t) ≥ λt/2 when |t| ≤ νλ.

This class includes two important penalties, the SCAD penalty [14], where

Jλ(t) = λtI{0 ≤ t ≤ λ} + [{aλ(t − λ) − (t2 − λ2)/2}/(a − 1) + λ2
]I{λ ≤ t ≤ aλ}

+ {(a + 1)λ2/2}I{t ≥ aλ} (a > 2),

and the MCP [23] where

Jλ(t) = {λt − t2/(2a)}I{0 ≤ t ≤ aλ} + (aλ2/2)I{t ≥ aλ} (a > 1).

As in [5], we set a = 4 in the SCAD penalty and a = 3 in the MCP, which are also close to the suggested values in the
original works that proposed these penalties. Previously proposed sparse reduced rank regression that used the lasso and
the adaptive lasso penalty cannot satisfyBo

=B exactly, due to the bias induced by the penalty. In addition, it is not obvious
to choose a good initial solution for the adaptive lasso penalty for high dimensional models, and thus we do not consider
those penalties in our theoretical investigations.
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