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a b s t r a c t

In the paper we generalize the following characterization of beta distribution to the
symmetric cone setting: let X and Y be independent, non-degenerate random variables
with values in (0, 1), then U = 1 − XY and V =

1−X
U are independent if and only if there

exist positive numbers pi, i = 1, 2, 3, such that X and Y follow beta distributions with
parameters (p1 + p3, p2) and (p3, p1), respectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the paper we generalize the following characterization of beta distribution to random matrices and, more generally,
to random variables valued in the symmetric cone: let X and Y be independent, non-degenerate random variables with values
in (0, 1), then U = 1 − XY and V =

1−X
U are independent if and only if there exist positive numbers pi, i = 1, 2, 3, such that

X and Y follow beta distributions with parameters (p1 + p3, p2) and (p3, p1), respectively. This univariate result was proved
in [16] under additional assumptions that X and Y have densities, which are strictly positive on (0, 1) and are log-locally
integrable. Regularity assumption on densities was removed in the work of [10]. It turns out that the existence of densities
assumption is redundant, what was shown in [15].

Here we are interested in a generalization of density versions of the beta characterization, when random variables are
valued in the cone Ω+ of r × r positive definite symmetric real matrices. Define the analogue of (0, 1) interval in Ω+:
D+ = {x ∈ Ω+ : I − x ∈ Ω+}, where I is the identity matrix. Beta distribution on symmetric cone Ω+ with parameters
(p, q) for p, q > dimΩ+/r − 1 is defined by its density

B(p, q)(dx) =
1

BΩ+
(p, q)

(det x)p−dimΩ/r det(I − x)q−dimΩ+/r ID+
(x) dx, x ∈ Ω+,

where BΩ+(p,q) is the normalizing constant. For any x ∈ Ω+ there exists unique y ∈ Ω+ such that y2 = x. Matrix y is
denoted by y = x1/2. We will show that if X and Y are independent random variables valued in D+, having continuous
densities, which are strictly positive on D+, then U = I − X1/2

· Y · X1/2 and V = U−1/2
· (I − X) · U−1/2 are independent

if and only if there exist numbers pi > dimΩ+/r − 1, i = 1, 2, 3, such that X and Y follow matrix-variate beta distribution
with parameters (p1 + p3, p2) and (p3, p1), respectively.
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Actually, we will consider muchmore general form of transformation of random variables, which is defined through, so-
called, multiplication algorithm. A multiplication algorithm is a mapping w : Ω+ → GL(r,R) such that w(x) · w⊤(x) = x
for any x ∈ Ω+, where GL(r,R) is the group of invertible r × r matrices andw⊤(x) is the transpose ofw(x). Multiplication
algorithms (actually their inverses called division algorithms) were introduced by Olkin and Rubin [13] alongside the
characterization of Wishart probability distribution (see also [3] for generalization to symmetric cone setting). The two
basic examples of multiplication algorithms are w1(x) = x1/2 (x1/2 being the unique positive definite symmetric square
root of x) andw2(x) = tx, where tx is the lower triangular matrix from the Cholesky decomposition of x = tx · t⊤x .

Wewill consider the independence of U = I −w(X) ·Y ·w⊤(X) and V = (w(U))−1
· (I −X) · (w⊤(U))−1, wherew andw

are twomultiplication algorithms satisfying additionally some natural conditions. It turns out that, depending on the choice
of multiplication algorithms, the characterized distribution may not be the beta distribution (see Theorem 6). For example,
whenw = w = w2 the condition of independence of U and V characterizes wider family of distributions called beta-Riesz,
which include beta distribution as a special case.

As in the famous Lukacs–Olkin–Rubin Theorem (see [14] for Ω+ case and [3] for all symmetric cones) the assumption
of invariance under the group of automorphisms of distributions of X and Y is considered. The distribution of X is said to
be invariant under the group of automorphisms if O · X · O⊤ d

= X for any orthogonal matrix O. This approach leads to a
characterization of beta distribution regardless of the choice of multiplication algorithms (see Theorem 8).

We cannot give the explicit formula for densities for any multiplication algorithms. In general case, the densities are
given in terms of, so-called,w-logarithmic Cauchy functions, that is, functions that satisfy the following functional equation

f (x)+ f (w(I) · y · w⊤(I)) = f (w(x) · y · w⊤(x)), (x, y) ∈ Ω+.

The form of w-logarithmic Cauchy functions without any regularity assumptions for two basic examples of multiplication
algorithms were recently considered in [9]. Later on we will write w(x) for the linear operator acting on Ω+ such that
w(x)y = w(x) · y · w⊤(x).w(x)will also be termed a multiplication algorithm.

Analogous characterization of Wishart distribution, when densities of respective random variables are given in terms of
w-logarithmic functions is given in [8]. Unfortunately, we cannot answer the question whether there exists multiplication
algorithm resulting in characterizing other distribution than beta or beta-Riesz. Moreover, the removal of the assumption
of the existence of densities remains a challenge.

The idea of the proof is analogous to that of [16]. The independence condition gives us the functional equation for
densities, which is then solved. As was observed in [10], in univariate case, the independence condition leads to the
generalized fundamental equation of information, that is

F(x)+ G
 y
1−x


= H(y)+ K


x

1−y


,

where (x, y) ∈ D0 =

(x, y) ∈ (0, 1)2 : x + y ∈ (0, 1)


and F ,G,H, K : (0, 1) → R are unknown functions. Our proof will

heavily rely on the solution to the generalization of this equation to the coneΩ+, which was given in [7].
Similar characterization of beta distribution for random matrices was proved under numerous additional assumptions

in [6]. The characterization of 2× 2 matrix-variate beta distribution was also given by Bobecka andWesolowski [2], but the
characterization condition was of a different nature.

All above considerations can be generalized to the symmetric cones, of which Ω+ is the prime example. The paper
is organized as follows. In the next section we give necessary introduction to the theory of symmetric cones. Next, in
Section 3we define beta and beta-Riesz probability distributions on symmetric cones. Main theorems are stated and proved
in Section 4. Section 5 is devoted to the analysis of the problem, when X and Y have distributions invariant under the group
of automorphisms.

2. Preliminaries

In this section we recall basic facts of the theory of symmetric cones, which are needed in the paper. For further details
we refer to [4].

A Euclidean Jordan algebra is a Euclidean space E (endowed with scalar product denoted ⟨x, y⟩) equipped with a bilinear
mapping (product)

E × E ∋ (x, y) → xy ∈ E

and a neutral element e in E such that for all x, y, z in E:

(i) xy = yx,
(ii) x(x2y) = x2(xy),
(iii) xe = x,
(iv) ⟨x, yz⟩ = ⟨xy, z⟩.
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