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a b s t r a c t

General formulae for the intensity function of a point process defined by the solution set of a
systemof smooth randomequations arewidely available in the literature, offering a precise
characterization of a type of random process arising naturally inmany fields. Almost all are
modifications or generalizations of an original formula derived by Rice (1945) and share the
same relatively simple structure. Related methods have been applied to the evaluation of
the density of the solution to multidimensional estimating equations arising in statistical
inference (Skovgaard, 1990; Jensen andWood, 1998; Almudevar et al., 2000). This approach
has been able to verify or extend a variety of known approximation methods, but has
otherwise not been commonly used in the area of small sample asymptotic theory, despite
its potential for the development of approximation methods of considerable generality.
This article develops a general order O(1/n) density approximation method for solutions
to multidimensional estimating equations which are sums of continuous independent,
non-identically distributed random vectors. Two issues in particular which arise in the
application of the Rice formula are addressed. Validation of this formula is often technically
challenging, so a set of general conditions motivated specifically by the application to
estimating equations is developed. In addition, the Rice formula includes a conditional
expectation which would be difficult to evaluate for non-Gaussian processes. To address
this issue, a general order O(1/n) approximation for expectations conditioned on random
sums is derived, which may be directly used in the Rice formula under the hypothesis
considered here. The method is demonstrated using the negative exponential regression
model, a type of non-canonical generalized linear model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Systems of randomequations appear in a number of areas in probability and statistics.Much earlyworkwasmotivated by
the problem of characterizing level crossings of random processes. A general solution was first derived in [20], interpreted
as the temporal distribution of the level crossings of a smooth stochastic process, related to the study of exceedances of
reflectedwaves in transmission lines. A related problem is the characterization of the distribution of the roots of polynomials
with random coefficients, solved in [14] for one equation, and generalized to multiple equations in, for example, [23]. See
[19,17] for surveys of the early history of this model. The problem is, of course, ubiquitous in statistical methodology, in
which estimators are frequently constructed as solutions to systems of equationswhich are dependent on randomquantities
X , typically a random sample from sample space X. The analysis which follows is relevant to all these applications.
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Suppose we have mapping Ψ : X ×Θ → Rp for a parameter spaceΘ ⊂ Rp. Let X ∈ X be some random quantity. Then
define the system of equations

Ψ (X, θ) = u. (1)

It is usually convenient to set u = 0, however, there is sometimes an advantage in allowing u to vary. Eq. (1) may be
interpreted as a random system of p equations in p variables θ ∈ Θ , with X serving as the random index. The set of solutions
then defines a point process Q onΘ . The problem considered here is the characterization of the distribution of Q . The Rice
formula for the intensity function of Q , in its multivariate extension, is given by

λA(θ) = fΨ (X,θ)(u)E

abs(det(Ψ ′(X, θ)))IE | Ψ (X, θ) = u


. (2)

Here, an indicator function IE is included to restrict Q to solutions of interest. For example, if Ψ (X, θ) is a stochastic process
in time θ , thenQ is the set of level crossings of u. If IE indicates positive signs of det(Ψ ′(X, θ)) thenλA is the intensity function
for up-crossings only. Alternatively, Ψ (X, θ) may be the derivative vector for an objective function ψ : X × Θ → R, so
that the sign of det(Ψ ′(X, θ)) distinguishes between maxima and minima. It may also be of interest to incorporate this
distinction into IE .

At first glance, application of this model to statistics would appear to differ in one important respect from the other
applications cited above in the sense that (1) is intended to have exactly one solution, say θ(X). Interestingly, this distinction
need not play an important role in the development of a formula such as λA. If a unique solution exists with probability 1,
equivalently P(|Q | = 1) = 1, then λA(θ) is simply the density of θ(X). In practice, this situation often does not strictly hold,
and work on this problem within this context has proceeded by accepting the variable cardinality of Q , and developing
regularity conditions under which suitable forms of the Rice formula hold [21,13,1].

This type of method is able to extend, or more easily derive, a number of known approximations. In [21] Barndorff-
Nielsen’s formula for the density of a maximum likelihood estimator conditioned on an ancillary statistic [4,5] is directly
derived using λA (see also [22]). Saddlepoint density approximations for elliptical contrast functions are rigorously
obtained in [13], while in [1] saddlepoint density approximations for regression and scale estimates obtained from Huber’s
M-estimation method [12] are derived, extending results reported in [9]. Regularity conditions used in [1] were weakened
in [10] to permit application to higher order bootstrap approximations. It seems possible, therefore, that the Rice formula
can form the basis for density evaluation methods of considerable generality.

Despite the ubiquitous appearance of formulae related to (2), verifying its validity may pose significant technical
challenges. It holds under general conditions for Gaussian processes [3] and validation has been extended to stable processes
(see [17] for discussion). Another approach was developed by Brillinger [7], in which the Rice formula was shown to hold
under general conditions for almost all u (Leadbetter and Spaniolo [17] surveys more recent results of this type). This
measure theoretic qualification may be quite restrictive, since in many applications, especially in statistical inference, we
wish to evaluate (2) at a fixed value of u (the results of [21,13,1] hold in this stronger sense). To address this problem, the
argument in [7] was extended to the fixed u case by noting that (2) must at least hold at some u′ arbitrarily close to u, then
developing continuity conditions exploiting this fact.

We will address in this article two issues which may hamper more widespread use of the Rice formula. The first is to
develop general validation conditions in the context of (1). Similar to [7], the essential requirement is that the process be
continuous in some sense. However, we are able to eliminate conditions imposed by Brillinger on the counting process for
Q , including the existence of higher order moments and continuity in u, at the price of introducing additional assumptions
on Ψ which are purely functional. In particular, we will assume that Ψ is a smoothly differentiable function of both θ
and X ∈ Rm. The remaining conditions on the probability measure of the process are quite minimal. Define Ψ ∗(X, θ) =

Ψ ′(X, θ)−1Ψ (X, θ) (amore precise definitionwill follow).Wewill require only the existence andboundedness of the density
of Ψ ∗ near u, as well as a tightness condition on the marginal density of Ψ ∗ over X. This type of regularity condition will be
much more natural for problems in statistical inference.

Our second task will be to consider the problem of developing a high order approximation method for the conditional
expectation in (2) (the difficulty of evaluating this formula is noted in [21]). A closed form solution is well known in the
multivariate Gaussian case, but can otherwise be quite difficult to calculate.Wewill develop an orderO(1/n) approximation
when Ψ is a sum of n independent but not identically distributed terms. The intuition behind this is that when Ψ
is approximately normal, the conditional expectation approximately behaves as in the Gaussian case. The method is
demonstrated on a non-canonical exponential family regression model discussed in [15].

Software is available at www.urmc.rochester.edu/biostat/people/faculty/almudevar.cfm.

2. Validation of the rice formula for random systems of equations

In [1] an alternative form of the Rice formula was developed, given in its simplest form by

λB(θ) = fΨ ∗(X,θ)(0), (3)

(wemay consider,without loss of generality, u in (1) to be fixed at 0, otherwise incorporateu intoΨ ).With suitable regularity
conditions (discussed below) the intensity function for Q will be λB. Using a standard transformation argument λA can
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