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a b s t r a c t

We consider the estimation of the stable tail dependence function. We propose a bias-
corrected estimator andwe establish its asymptotic behaviour under suitable assumptions.
The finite sample performance of the proposed estimator is evaluated by means of an
extensive simulation studywhere a comparisonwith alternatives from the recent literature
is provided.
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1. Introduction and notations

Many problems involving extreme events are inherently multivariate. For instance, de Haan and de Ronde [5] estimate
the probability that a stormwill cause a seawall near the townof Petten (theNetherlands) to collapse because of a dangerous
combination of sea level and wave height. Other examples can be found in actuarial science, finance, environmental science
and geology, to name but a few. A fundamental question that ariseswhen studyingmore than one variable is that of extremal
dependence. Similarly to classical statistics one can summarise extremal dependency in anumber ofwell-chosen coefficients
that give a representative picture of the dependency structure. Here, the prime example of such a dependencymeasure is the
coefficient of tail dependence [15]. Alternatively, a full characterisation of the extremal dependence between variables can
be obtained from functions like e.g. the stable tail dependence function, the spectral distribution function or the Pickands
dependence function.We refer to Beirlant et al. [3] and de Haan and Ferreira [6], and the references therein, formore details.
In this paper we will focus on bias-corrected estimation of the stable tail dependence function.

For any arbitrary dimension d, let (X (1), . . . , X (d)) be a multivariate vector with continuous marginal cumulative
distribution functions (cdfs) F1, . . . , Fd. The stable tail dependence function is defined for each xi ∈ R+, i = 1, . . . , d, as

lim
t→∞

tP

1 − F1(X (1)) 6 t−1x1 or . . . or 1 − Fd(X (d)) 6 t−1xd


= L(x1, . . . , xd)

which can be rewritten as

lim
t→∞

t

1 − F


F−1
1 (1 − t−1x1), . . . , F−1

d (1 − t−1xd)


= L(x1, . . . , xd) (1)

where F is the multivariate distribution function of the vector (X (1), . . . , X (d)).
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Now, consider a sample of size n drawn from F and an intermediate sequence k = kn, i.e. k → ∞ as n → ∞ with k/n → 0.
Let us denote x = (x1, . . . , xd) a vector of the positive quadrant Rd

+
and X (j)k,n the kth order statistic among n realisations of

the margins X (j), j = 1, . . . , d. The empirical estimator of L is then given by

Lk(x) =
1
k

n
i=1

1
{X(1)i >X(1)n−[kx1]+1,n or ... or X(d)i >X(d)n−[kxd]+1,n}

.

The asymptotic behaviour of this estimator was first studied by Huang [14]; see also [8,6]. As is common in extreme value
statistics, the empirical estimatorLk(x) is affected by bias, which often complicates its application in practice. This bias-issue
will be addressed in the present paper.

In the univariate framework there are numerous contributions to the bias-corrected estimation of the extreme value
index and tail probabilities. Typically, the bias reduction of estimators for tail parameters is obtained by taking the second
order structure of an extreme value model explicitly into account in the estimation stage. We refer here to Beirlant et al. [1],
Feuerverger andHall [10],Matthys and Beirlant [16], andmore recently, Gomes et al. [13] and Caeiro et al. [4]. In the bivariate
framework some attention has been paid to bias-corrected estimation of the coefficient of tail dependence η. Goegebeur and
Guillou [12] obtained the bias correction by a properly weighted sum of two biased estimators, whereas Beirlant et al. [2]
fitted the extended Pareto distribution to properly transformed bivariate observations. Recently, a robust and bias-corrected
estimator for ηwas introduced by Dutang et al. [9]. For what concerns the stable tail dependence functionwe are only aware
of the estimator recently proposed by Fougères et al. [11].

For the sequel, in order to study the behaviour ofLk(x) or a function of it, we need to assume some conditions mentioned
below and well-known in the extreme value framework:

First order condition: The limit in (1) exists and the convergence is uniform on [0, T ]
d for T > 0;

Second order condition: There exist a positive function α such that α(t) → 0 as t → ∞ and a non null functionM such
that for all x with positive coordinates

lim
t→∞

1
α(t)


t

1 − F


F−1
1 (1 − t−1x1), . . . , F−1

d (1 − t−1xd)


− L(x)


= M(x), (2)

uniformly on [0, T ]
d for T > 0;

Third order condition: There exist a positive function β such that β(t) → 0 as t → ∞ and a non null function N such that
for all xwith positive coordinates

lim
t→∞

1
β(t)


t

1 − F


F−1
1 (1 − t−1x1), . . . , F−1

d (1 − t−1xd)


− L(x)
α(t)

− M(x)


= N(x), (3)

uniformly on [0, T ]
d for T > 0. This requires that N is not a multiple ofM .

Note that these assumptions imply that the functionsα andβ are both regularly varyingwith indicesρ andρ ′ respectively
which are non positive. In the sequel we assume that both indices are negative. Remark also that the functions L, M and N
have an homogeneity property, that is L(ax) = aL(x), M(ax) = a1−ρM(x) and N(ax) = a1−ρ−ρ′

N(x) for a positive scale
parameter a.

In this paper, based on the process representation for the empirical estimatorLk given in Proposition 2 in [11], we
introduce a novel bias correction procedure. Indeed, we propose to estimate the bias directly and then to subtract it from
our uncorrected kernel estimator. This is an alternative to the approach proposed by Fougères et al. [11] where differences
between estimators of L are used to eliminate the bias. Moreover, in the spirit of Gomes et al. [13], we show that using
the present approach the bias is decreased while keeping the asymptotic variance at the level of the uncorrected kernel
estimator. These theoretical results are also complemented by improved finite sample behaviour.

The remainder of our paper is organised as follows. In the next sectionwe introduce our estimators for L(x), as well as for
the second order quantities ρ and α, and study their asymptotic properties. The finite sample performance of the proposed
bias-corrected estimator and of some estimators from the recent literature are evaluated by a simulation experiment in
Section 3. The proofs of all results are given in the Appendix.

2. Estimators and asymptotic properties

Consider now the rescaled versionLk,a(x) := a−1Lk(ax)
for a positive scale parameter a. Our first aim is to look at the behaviour of

Lk(x) :=
1
k

k
j=1

K(aj)Lk,aj(x)
where aj :=

j
k+1 , j = 1, . . . , k, and K is a function defined on (0, 1) which is positive and such that

 1
0 K(u)du = 1. This

function is called a kernel function in the sequel. Let ej be a d-vector with zeros, except for position j where it is one.
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