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a b s t r a c t

Longitudinal studies often involve multiple outcomes measured repeatedly from the
same subject. The analysis of multivariate longitudinal data can be challenging due to
its complex correlated nature. In this paper, we develop multivariate marginal models in
longitudinal studies with multiple response variables, and improve parameter estimation
by incorporating informative correlation structures. In theory, we show that the proposed
method yields a consistent and efficient estimator which follows an asymptotic normal
distribution. Monte Carlo studies indicate that the proposed method performs well in
the sense of reducing bias and improving estimation efficiency. In addition, the proposed
approach is applied to a real longitudinal data example of transportation safety with
different response families.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate longitudinal analysis has increased in popularity in several disciplines where subjects are measured across
time with regard to a collection of response variables. Multivariate longitudinal data provides a unique opportunity in
studying the joint evolution of various responses over a period of time. Unlike the traditional longitudinal studies with the
univariate response, the analysis of multivariate longitudinal data can be challenging because both repeatedmeasurements
from the same subject and different response variables are likely to be correlated.

The correlated nature of longitudinal data often makes it difficult to specify the full likelihood function. The generalized
estimating equation (GEE, [12]) is a suitable approach for parameter estimation for longitudinal datawithout specification of
the likelihood. Although the GEE yields a consistent estimator and variance estimates, the estimator can be inefficient under
the incorrect specification of the correlation structure. Qu, Lindsay and Li [13] developed the quadratic inference function
(QIF) to improve the efficiency of the GEE when the working correlation is incorrectly specified. However, the QIF approach
ignores the multivariate response association and constructs univariate marginal models for parameter estimation. Model
accuracy and efficiency can be improved by incorporating the correlation information among responses effectively.

Repeated observations of multivariate response variables require a multivariate longitudinal framework. Generalized
linear mixed models have been extended in multivariate longitudinal studies; see [9,4,10,1,14]. When the number of
parameters increases with the sample size and a collection of responses, the random-effect approaches aremore likely to be
computationally intensive and unstable. In addition, it is difficult to evaluate the marginal likelihood of jointly generalized
linear mixed models when the response is non-normal.

Contrary to mixed-models approaches, Asar and İlk [3] utilize the generalized estimating equation based on multiple
marginalmodels ofmultiple responses. However, the asymptotic properties such as consistency and efficiency of estimation
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have not been studied. In practice, the construction of the joint marginal model becomesmore complexwhenwe impose on
certain aspects of the correlation structure onmultivariate longitudinal analysis. In addition, inferences of interest are easily
influenced by the correlation structure’s assumptions. Alternatively, if the unstructured correlation structure is considered,
it might cause convergence problems as the number of parameters to be estimated grows rapidly [3]. Furthermore, the
marginal modeling approach is mainly applicable for a collection of the same response family.

In this paper, we provide the estimation procedure for multiple longitudinal data by using the quadratic inference
function approach for multivariate marginal models. The proposed approach is able to estimate all parameters
corresponding tomultiple responses simultaneously even if the type of the responses are different. In addition, the proposed
method can easily take correlation information from repeated measures within the subject and among different responses
without estimating the correlation parameters, yet it does not require specifying the likelihood functions. Our theoretical
investigations and simulation studies show that the estimator of the proposed approach is consistent andmore efficient than
the estimator obtained by a certain amount of correlation information. Furthermore, the proposed approach also provides an
inference function for model diagnostic tests and goodness-of-fit tests for multivariate longitudinal data. The multivariate
modeling approach is applied on a real longitudinal data set on the transportation safety study that consists of a discrete
response variable (the crash frequency) and a binary response variable (the presence of crash severity).

The paper is organized as follows. In Section 2, we propose the estimation procedure and statistical inferences for
multivariate longitudinal responses, illustrate the choice of the correlation structure, and discuss how to implement for
data with missing. Section 3 provides simulation studies and data analysis for the transportation safety study. We conclude
remarks with a brief discussion in Section 4. The theoretical proofs are placed in the Appendix.

2. Longitudinal data analysis with multivariate responses

2.1. Estimation procedure for multivariate marginal models

Suppose yi·k = (yi1k, . . . , yiJik)
′ is the kth response variable measured Ji times from the ith subject, and yijk’s are

independent identically distributed for i = 1, . . . ,N , where N is the sample size and Ji is the cluster size. To simplify the
notation, we first set Ji = J for all i and the unbalanced data case will be discussed with more details in Section 2.4. For the
generalized linear model, the formulation of multivariate marginal models is defined as

µijk = E(yijk|xij) = µ(x′

ijβk), (1)

where µ(·) is an inverse link function, βk = (βk1, . . . , βkP)
′ is a P-dimensional parameter vector for the kth response and

xij is the corresponding covariate at time j for the ith subject.
To accommodate the association between responses, we stack up the response variable as Yi = (y′

i·1, . . . , y
′

i·K )′ and
Xi = (IK ⊗ xi) is extended to a PK × JK matrix by Kronecker product operator, where K is the number of responses,
xi = (xi1, . . . , xiJ) is a P × J matrix, IK is a K × K identity matrix and ⊗ corresponds to a left Kronecker product. The
corresponding parameter is a PK -dimensional vector of β = (β′

1, . . . ,β
′

K )′ and the marginal model in (1) is represented
as µi = E(Yi|Xi) = µ(X′

iβ). We extend the quasi-likelihood to incorporate the correlation information and obtain the
estimator by solving

N
i=1

µ̇′

iA
−1/2
i R(α)−1A−1/2

i (Yi − µi) = 0, (2)

where µ̇i = (∂µi/∂β), Ai is the JK × JK diagonal marginal variance matrix of Yi, and R(α) is the working correlation matrix
that contains correlation parameters α. The approach requires only a few nuisance parameters α to specify a common
working correlation structure such as an exchangeable or the first-order autoregressive (AR1) correlation.

For the multivariate marginal model, the working correlation structure R(α) enables us to accommodate three pieces
of association information; the correlation across time within the subject, the cross-correlation between different response
variables both at the same time and across time. Therefore, the simple working correlation structure such as exchangeable
or AR1 does not represent the true correlation structure sufficiently. It is well-known that when the correlation structure is
incorrectly specified, the estimator can be inefficient. If the unspecified correlation structure is considered as the working
correlationmatrixR(α), there are (JK)×(JK−1)/2 correlation parametersα to be estimated,whichmight cause convergence
problems when the cluster size is large.

To avoid the estimation of α, Qu, Lindsay and Li [13] formulate the inverse of R by a linear combination of basis matrices,

R−1
= b0I +

q
m=1

bmBm, (3)

where I is an identity matrix, B1, . . . , Bq are basis matrices with 0 and 1 components and bm’s are unknown coefficients. The
choice of basis matrices will be discussed in more detail in Section 3. By replacing R(α)−1 in (2) with basis matrices in (3),
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