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a b s t r a c t

This paper presents multiplicative, or bi-additive, models with some spline-type regularity
for a rectangular array of data, for example in space and time. The one-dimensional
smoothing spline model is extended to this multiplicative model including regularity
in each dimension. For estimation, we prove the existence of the maximum penalized
likelihood estimates (MPLEs), and introduce a numerical algorithm that converges in a
weak sense to a critical point of the penalized likelihood. Explicit MPLEs are given in two
important particular cases.

With regard to hypothesis testing, we focus on the ‘‘no effect’’ test and prove that
the null distribution of the penalized likelihood ratio test (PLRT) does not depend on the
nuisance parameters underH0, leading to easyMonte-Carlo techniques. Numerical results
are presented for both simulated data and climate data. For simulated data, our estimation
algorithm is shown to have a good behavior. The application to climate data illustrates how
multivariate spline analysis for multiplicative models may be of interest in climate change
detection.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The paper presents amultivariate model, along with its estimation and testing procedures, that can be applied to climate
change detection.

Studying the evolution of climate change over a set of locations is an important issue for climate monitoring. In order
to assess recent changes, many methods used in climate sciences rely on specified spatial, temporal, or spatio-temporal
patterns of change. These are usually provided by numerical simulations performed with climate models (see, e.g., [12] for
a review). In this paper, we take a different approach and propose to estimate the change, as well as its significance, only
from observed data. To do so, we use a space–time separability assumption, followingMitchell [18] or Ribes et al. [20]. More
precisely, we assume that the change depends on both space and time, but with the shape of the spatial pattern remaining
constant over time, or equivalently, with the shape of the temporal pattern remaining constant over locations. Such an
assumption has been widely used in climate science under the name of ‘‘pattern scaling’’ [18,23], e.g., in order to estimate
transient climate change over the 21st century. In this way, we assume the climate change term to follow a multiplicative
or biadditive model as in [8,9]. Such models are commonly used to describe interaction between two predictors. However,
our model is somewhat more complex (see Section 2) than described in these papers, as correlations are assumed. This is
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important for application to temperature data, as spatial dependence is strong. Although independence in time is sometimes
invoked for annual mean temperature over land regions (e.g., [24]), we here assume a more general space–time separable
covariance structure.

In the context of this multiplicative model, our statistical model assumes smooth response functions, and we therefore
consider spline functions. Our multiplicative spline model is a multivariate generalization of classical spline models (see,
e.g., [25]), but differs from the generalmultivariate form. In general,multivariate splinemodels are an extension of piecewise
regression over simplexes, where continuity conditions are imposed to the derivatives on the edges. A presentation of
bivariate splines on a lattice is given by Chui andWang [4]. A very pedagogical presentation of the problem is also provided
by Friedman [10], with an introduction to the Multivariate Adaptive Regression Spline (MARS) algorithm. In the forward
procedure of the MARS algorithm, at each step, the domain is partitioned based on a covariable and a hinge function is
introduced to separate two sub-regions. This step is followed by a backward elimination. Another option to fit smooth
functions is provided by boosted trees methods, based on partition on bootstrap sub-samples [2,21]. The latter are usually
considered asmore efficient, butMARS provides amuch faster algorithm. However, we have not followed this route because
the space–time separability, i.e. the multiplicative structure, plays a key role in our application.

A first result is given in Section 2.2 regarding the non estimability of our multiplicative model without regularity
assumption. To overcome this difficulty, we require regularity in time and/or space; our main result is that maximum
penalized likelihood estimates exist (Theorem 1). These estimates, however, are not explicit; Section 3 ends with the
presentation of a ‘‘flip-flop type’’ recursive estimation algorithm and a proof of its convergence in a weak sense. Explicit
formulas for the maximum penalized likelihood estimators are given for two important particular cases: the classical
univariate case and the case in which the variance–covariance matrix between the different variables is the identity, up
to a scalar.

The ‘‘no effect’’ test is considered in Section 5. In the context of climate change, this test aims to determine whether the
climate has changed or not. In IPCC language, such a test might be regarded as a ‘‘detection’’ test, as it is consistent with
the IPCC’s definition: ‘‘Detection of change is [. . . ] the process of demonstrating that climate [. . . ] has changed in some defined
statistical sense without providing a reason for that change.’’ [11,13]. Recently, the ‘‘no effect’’ test (which assesses whether
the regression function is zero), and the polynomial test (which assesses whether the regression function is a polynomial)
have been studied in particular detail for spline models [15,6, and others]. Here we propose a penalized likelihood ratio
test, and show that, under some conditions, its null distribution does not depend on the unknown parameters of the model.
Consequently, a p-value can be computed after easily simulating the null distribution with Monte-Carlo techniques. This
hypothesis testing procedure is different from those previously proposed in the univariate case, and could be of interest
even in this simpler case.

Application of this method tomultivariate simulated data (Section 6.1) illustrates the capabilities and the accuracy of the
method. Application to real data (Section 6.2) provides an estimation of the pattern of temperature warming, and strong
evidence that the climate has recently changed over France.

2. Statistical framework

2.1. Model and motivations

We consider a bi-dimensional array of data Yi,j, i = 1, . . . , n, j = 1, . . . , p, that represents, for example, observations
at different times and places. A general functional multiplicative interaction model is assumed:

Yi,j = f (x2,j)+ g(x1,i) h(x2,j)+ εi,j, i = 1, . . . , n, j = 1, . . . , p, (1)

where f (·), g(·), h(·) are three unknown functions, 0 ≤ x1,1 < · · · < x1,n ≤ 1, and 0 ≤ x2,1 < · · · < x2,p ≤ 1, are known
real numbers that can be random or deterministic (e.g., equally spaced), and ε is a centered random noise. This general
model is examined in Appendix A.2, but the novelty of this paper lies primarily in the estimation and hypothesis testing of
the interaction term g(x1,i) h(x2,j), and so for the sake of simplicity, we will consider the simpler version where

Yi,j = g(x1,i) h(x2,j)+ εi,j. (2)

It is assumed that ε = (εi,j)i,j follows a Gaussian distribution with variance–covariance matrix satisfying

var(ε) = Σg ⊗Σh, i.e. cov(εi,j, εi′,j′) = (Σg)i,i′(Σh)j,j′ , (3)

whereΣg andΣh are real symmetric positive definitematrices, of size n×n and p×p respectively. Such class of distributions
has been described as multilinear normal distribution [19]. The problem where bothΣg andΣh are unknown is difficult to
handle andhas very fewpractical applications. Indeed, because of dimension considerations, full-rank estimates of these two
matrices cannot be obtained simultaneously as soon as n ≠ p. Therefore we will assume n ≥ p (without loss of generality),
andΣg to be known, whileΣh is unknown.

Without loss of generality, we may fix a free multiplicative constant betweenΣg andΣh, and set

var(ε) = Σg ⊗Σh = σ 2 Ug ⊗ Uh, (4)



Download English Version:

https://daneshyari.com/en/article/1145325

Download Persian Version:

https://daneshyari.com/article/1145325

Daneshyari.com

https://daneshyari.com/en/article/1145325
https://daneshyari.com/article/1145325
https://daneshyari.com

