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a b s t r a c t

A least product relative error criterion is proposed for multiplicative regression models.
It is invariant under scale transformation of the outcome and covariates. In addition,
the objective function is smooth and convex, resulting in a simple and uniquely defined
estimator of the regression parameter. It is shown that the estimator is asymptotically
normal and that the simple plug-in variance estimation is valid. Simulation results confirm
that the proposedmethodperformswell. An application to body fat calculation is presented
to illustrate the new method.
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1. Introduction

In regression analysis, the least squares (LS) and least absolute deviation (LAD) are the most commonly used criteria
based on absolute errors [10,8]. In some situations, however, criteria based on relative errors that are scale invariant and
less sensitive to outliers are more desirable [5,4,3,13,6,1,14]. Consider the following multiplicative regression model

Yi = exp(X⊤

i β)ϵi, i = 1, . . . , n, (1)

where Yi is the response variable, Xi is the p-vector of explanatory variables with the first component being 1 (intercept), β
is the corresponding p-vector of regression parameters with the first component being the intercept and ϵi is the error term,
which is strictly positive. An additional constraint on ϵ needs to be imposed so that the first component of β (intercept)
becomes identifiable. Model (1) is also known as the accelerated failure time (AFT) model in the survival analysis literature.

For themultiplicative regressionmodel (1), Chen et al. [1] give a convincing argument that a proper criterion should take
into account both types of relative errors: one relative to the response and the other relative to the predictor of the response.
A criterion with only one type of relative errors often leads to biased estimation. They introduced the least absolute relative
error (LARE) estimation for model (1) by minimizing

LAREn(β) ≡

n
i=1

Yi − exp(X⊤

i β)

Yi

+ Yi − exp(X⊤

i β)

exp(X⊤

i β)

 , (2)
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the sum of the two types of the relative errors. The LARE estimation enjoys the robustness and scale-free property. However,
like the LAD, the LARE criterion function is nonsmooth, and, as a result, the limiting variance of the corresponding estimator
involves the density of the error. Furthermore, its computation is slightly more complicated than linear programming.

It would be desirable to develop a criterion function which not only incorporates the relative error terms, but also is
smooth and convex. The latter would ensure the numerical uniqueness of the resulting estimator and the consistency of the
usual plug-in sandwich-type variance estimation. The main purpose of this paper is to introduce a simple, smooth, convex
and interpretable criterion function and to develop a related inference procedure.

The rest of the paper is organized as follows. Section 2 introduces the least product relative error (LPRE) criterion and
extension of the LPRE to a general class of relative error criteria, along with simple inference procedures, including point
and variance estimation, hypothesis testing and related large sample properties. Sections 3 and 4 contain simulation results
and a real example. Some discussion and concluding remarks are given in Section 5.

2. Method

The least absolute relative error (LARE) criterion (2) of Chen et al. [1] is the result of adding together the two relative error
terms. In this paper, we consider multiplying the two relative error terms and propose the following least product relative
error (LPRE) criterion

LPREn(β) ≡

n
i=1

Yi − exp(X⊤

i β)

Yi

× Yi − exp(X⊤

i β)

exp(X⊤

i β)

 . (3)

Note that the summand can bewritten as {Yi−exp(X⊤

i β)}2/{Yi exp(X⊤

i β)}. Thus, itmay be viewed as a symmetrized version
of the squared relative errors [6].

A simple algebraic manipulation leads to the following alternative expression

LPREn(β) ≡

n
i=1


Yi exp(−X⊤

i β) + Y−1
i exp(X⊤

i β) − 2

, (4)

fromwhich we can see major advantages. First, the criterion function is infinitely differentiable. Second, it is strictly convex
since the exponential function is strictly convex. As a result, finding theminimizer is equivalent to finding the root of its first
derivative. The usual asymptotic properties can therefore be derived by a local quadratic expansion and standard inference
methods for M-estimation are applicable.

2.1. Estimation

We now deal with parameter estimation and develop the corresponding theory. Our estimator for β will be denoted
by β̂n and defined as the minimizer of (3) or, equivalently, (4). The strict convexity of (4) entails that the minimizer, if it
exists, must be unique. Assume the design matrix

n
i=1 XiX⊤

i is nonsingular. This is a minimum condition for the purpose
of identifiability. Then, LPREn(β) is strictly convex, and, as ∥β∥ → ∞,

n
i=1(X

⊤

i β)2 → ∞, implying max{|X⊤

i β| : i =

1, . . . , n} → ∞. It follows that LPREn(β) → ∞ as ∥β∥ → ∞. And the following theorem holds.

Theorem 1. If
n

i=1 E(XiX⊤

i ) is nonsingular, then β̂n exists and is unique.

Remark 1. The nonsingularity of
n

i=1 E(XiX⊤

i ) is also a necessary and sufficient condition for the least squares estimator
to be unique.

We next establish asymptotic properties for β̂n under suitable regularity conditions. For notational simplicity, we assume
that (X⊤, Y )⊤, (X⊤

i , Yi)
⊤, i = 1, . . . , n are independent and identically distributed. It allows for heteroskedasticity in that it

does not require the error term ϵ to be independent of the explanatory variable X . We will use the following conditions for
the development of the asymptotic theory.

Condition C1. There exists δ > 0 such that E{(ϵ + 1/ϵ) exp(δ∥X∥)} < ∞.
Condition C1*. There exists δ > 0 such that E{(ϵ + 1/ϵ)2 exp(δ∥X∥)} < ∞.
Condition C2. The expected design matrix, E(XX⊤), is positive definite.
Condition C3. The error terms satisfy E(ϵ|X) = E(1/ϵ|X).
Condition C1 is almost minimal for the criterion function (4) to have a finite expectation in a neighborhood of the true

parameter β0. It also ensures that the limit of (4) is twice differentiable with respect to β and that the differentiation and
expectation is interchangeable. Condition C2 ensures that the design matrix is nonsingular, a minimal requirement for the
regression parameter to be identifiable. Under C1 and C2, the limiting criterion function is strictly convex in a neighborhood
of β0. Condition C3 is equivalent to that the derivative of the criterion function at β0 has mean 0, again a minimal condition
for the resulting estimator to be asymptotically unbiased. The strict convexity and the asymptotic unbiasedness ensure that
the estimator is consistent. Condition C1* is simply a stronger version of C1 for the asymptotic normality to hold.



Download English Version:

https://daneshyari.com/en/article/1145329

Download Persian Version:

https://daneshyari.com/article/1145329

Daneshyari.com

https://daneshyari.com/en/article/1145329
https://daneshyari.com/article/1145329
https://daneshyari.com

