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a b s t r a c t

Factor analysis with uncertain functional constraints about factor loadingmatrix is consid-
ered from a Bayesian viewpoint, in which the uncertain prior information is incorporated
in the analysis. We propose a hierarchical screened scale mixture of normal factor (HSMF )
model for flexible inference of the constrained factor loadings, factor scores, and specific
variances as well as the covariancematrix of the factors. The proposedmodel makes provi-
sions for robust factor analysiswith uncertainty about the functional constraints. A number
of inferential aspects of the proposed model are investigated in order to render the pro-
posed analysis optimal. These include the closure properties of a class of rectangle-screened
scale mixture of multivariate normal (RSMN) distributions which is useful for statistical in-
ference of the HSMF model, eliciting the prior and posterior evolutions of the uncertainly
constrained factor loadings, and providing the efficient Bayesian estimation procedure by
using the MCMC methods. Empirical analysis for Bayesian factor models with synthetic
data and real data applications is given to illustrate the usefulness of the proposed model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Factor analysis is one of the most commonly used statistical techniques for formulating theories in the multivariate
behavioral and social sciences [4]. It is a casualmodeling technique that attempts to explain dependence amongmultivariate
observations through covariance relationships in terms of a smaller number of latent random factors [26].

In matrix form, the observation model for the basic normal factor analysis is given by

xj − µx = Λfj + εj, j = 1, . . . , n, (1.1)

where xj is a p × 1 random observation vector with mean µx and covariance matrix Σx, Λ = {λik} is a p × m matrix of

factor loadings with rank m ≤ p, fj
i.i.d.
∼ Nm(0,Φ) is an m × 1 vector of latent random factors, and εj

i.i.d.
∼ Np(0,Ψ ) is a

vector of noise terms, independent of fj, where Ψ is a diagonal matrix. The basic model in (1.1) has two specific features
to be considered for statistical inference, one about the restriction of the factor loadings matrixΛ and the other relating to
the distributional assumption of the noise terms εj. Restriction of the factor loadings matrix Λ needs to be made to define
a unique model free from identifiability and to allow useful interpretation of the model, while the normal noise terms are
exploited to deal with the normal linear factor model.
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Indeed, identifiability of the factor model in (1.1) may be assessed by comparing the number of parameters inΛ, Ψ , and
Φ with the p(p+1)/2 elements that are contained in the empirical covariancematrix. In line with a confirmatory approach,
fixed values (zero or one) may be preset for some of the loadings inΛ [30]. Specifically, since the model in (1.1) is invariant
under transformation of the form Λ∗

= ΛP⊤ and f∗ = Pf, where P is any orthogonal k × k matrix, the approaches by
Geweke and Zhou [8] and Aguilar and West [1] and Lopes and West [20], for example, were to assume that Λ is a block
lower triangular matrix, assumed to be of full rank with diagonal elements strictly positive, which turns out to be useful for
both identification and interpretation.

Modification of the distributional assumptions of the normal linear factormodel (1.1)wasmade for practical applications.
For example, [10], and [23] considered factor analysis using dynamic factor models wherein fj’s are dependent; Wedel
et al. [32] and Wedel and Kamakura [33] also noted the assumption that fj are normal may need to be modified for certain
applications; Fokoué [6] and McLachlan et al. [21] considered a finite mixture of factor models to obtain a flexible factor
analysis model. Copious references to the literature on the application and analysis of the Bayesian factor model in (1.1) as
well as its more elaborated models can be found in [25,26,5].

The present paper, however, considers yet anothermodel in which prior knowledge about the factor loadings is available
in the form of uncertain multivariate inequality constraints. Specifically, suppose that the prior knowledge aboutΛ in (1.1)
is uncertain and likely to have the following functional constraint:

{λ; L(λ) ∈ Cq(α,β)}, (1.2)

where λ = Vec(Λ⊤), L(λ) is a linear function of λ, Cq(α,β) denotes a q-variate rectangle set, i.e., L(λ) ∈ Cq(α,β) ≡

{(v1, . . . , vq);αi < vi < βi, i = 1, . . . , q, q ≤ mp}, and (v1, . . . , vq)⊤ = L(λ). Here, if D is a p × q matrix then by
Vec(D) we mean the pq × 1 vector formed by stacking the columns of T under each other; that is if D = (d1, . . . , dq),
where d i is p × 1 for i = 1, . . . , q, then Vec(D) = (d⊤

1 , . . . , d
⊤

q )
⊤. There could be at least three reasons for employing the

functional constraint (1.2) for the factor model: (i) to provide a realistic model that explains the structure of empirical data,
(ii) to achieve identifiability of themodel, and (iii) to obtainmoremeaningful interpretations. Indeed, in either confirmatory
or exploratory factor analysis, the location and scale of the latent factor often need to be constrained through the factor
variances or loadings (e.g. [22,29,18]).

Thus, alternativemethods for dealingwith the constraints in Bayesian confirmatory factor analysis need to be developed,
and indeed, such practical considerations and issues with identifiability constraints are the motivation for development of
a more flexible method of constrained factor analysis, which is tackled in this paper. In particular, a Bayesian approach
to flexibly incorporating the uncertain prior knowledge about the constraints on Λ with possibly non-normal sample
information is proposed, which is the main contribution of this paper to the literature on Bayesian factor analysis.
Accordingly, we contrast the proposed model with other existing Bayesian factor models for dealing with uncertain
constraints in the factor loading and incorporating the heavy-tailed distribution in terms of hierarchical scale mixture
of multivariate normal distributions into the factor analysis. The remaining part of this paper is organized as follows. In
Section 2, we give a basic description of a class of the RSMN (rectangle-screened scale mixture of multivariate normal)
distributions and provide its useful properties which will be the base of the modeling and estimation of our constrained
factor model. In Section 3, we specifically propose the HSMF (hierarchical screened scale mixture of normal factor) model
based on the properties of the class of RSMN distributions and explore its theoretical properties for estimation by analytically
deriving the posterior distribution and marginal distribution of the HSMF model. The HSMF model adopts a flexible two-
stage prior to elicit the uncertainty of the functional constraint under non-normal and/or heavy-tailed prior information
on λ in (1.2) (see, e.g. [24,14]). Further, it goes through robust factor modeling (see, e.g., [36]) subject to uncertainty in the
parametric restriction to avoid anomalies generated from the non-normal sample information. Bayesian factor models with
uncertain functional constraints are illustrated in the context of the HSMF model in Section 4 through empirical analysis.
Finally, concluding remarks with a discussion are made in Section 5.

2. Preliminaries

Before presenting theHSMF modelwith the uncertainmultivariate rectangle constraints of the factor loading coefficients
λ, a brief review of some of the important properties of the class of RSMN distributions is provided. The properties are useful
for the specifications and estimation of the HSMF model.

Assume that the joint distribution of respective q × 1 and p × 1 vector variables U and V is F ∈ F , where

F =


F : Ns (ψ, κ(η)Γ ) , η ∼ G(η)with κ(η) > 0, and η > 0


, (2.1)

s = (q+ p), η is a mixing variable with the cdf G(η), κ(η) is a suitably chosen weight function, andψ and Γ are partitioned
as

ψ =


ψU
ψV


and Γ =


ΓU ∆⊤

∆ ΓV


corresponding to the orders of U and V. Notice that F , defined by (2.1), denotes a class of scale mixture of multivariate
normal (SMN) distributions (see, e.g., [9] for details), equivalently denoted as SMN s(ψ,Γ , κ,G) in the remaining part of
the paper.
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