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a b s t r a c t

We derive the asymptotic rate of decay to zero of the tail dependence of the bivariate skew
normal distribution under the equal-skewness condition α1 = α2, = α, say. The rate de-
pends onwhether α > 0 or α < 0. For the lower tail, the latter case has rate asymptotically
identical with the bivariate normal (α = 0), but has a differentmultiplicative constant. The
case α > 0 gives a rate dependent on α. The detailed asymptotic behaviour of the quantile
function for the univariate skew normal is a key. This study is partly a sequel to our earlier
one on the analogous situation for bivariate skew t .

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The coefficient of lower tail dependence of a random vector X = (X1, X2)
⊤ with marginal inverse distribution functions

F−1
1 and F−1

2 is defined as

λL = lim
u→0+

λL(u), where λL(u) = P(X1 ≤ F−1
1 (u)|X2 ≤ F−1

2 (u)). (1)

X is said to have asymptotic lower tail dependence if λL exists and is positive. If λL = 0, then X is said to be asymptotically
independent in the lower tail. This quantity provides insight on the tendency for the distribution to generate joint extreme
event since it measures the strength of dependence (or association) in the lower tails of a bivariate distribution. If the
marginal distributions of these random variables are continuous, then from (1), it follows that λL(u) can be expressed in
terms of the copula of X, C(u1, u2), as

λL(u) =
P(X1 ≤ F−1

1 (u), X2 ≤ F−1
2 (u))

P(X2 ≤ F−1
2 (u))

=
C(u, u)

u
. (2)

The foci of such studies in asymptotic dependence/independence are therefore the asymptotic behaviour as u → 0+ of
F−1
i (u), i = 1, 2 and of C(u, u) = P(X1 ≤ F−1

1 (u), X2 ≤ F−1
2 (u)).
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In the case of standard bivariate normal with correlation coefficient ρ, −1 < ρ < 1, where the distribution function for
each univariate marginal is denoted by Φ(·), the asymptotic behaviour is relatively well-known:

Φ−1(u) ∼ −


−2 log(u


−4π log u) (3)

C(u, u) ∼ c(ρ)u
2

1+ρ (− log u)
−ρ
1+ρ (4)

as u → 0+, where c(ρ) = (1+ ρ)3/2(1− ρ)−1/2(4π)−ρ/(1+ρ). The expression (4) maybe found (for upper tail dependence)
in Reiss and Thomas [24, p. 322], where it is attributed to Ledford and Tawn [15]. A sketch proof in a more general setting
may be found in Ledford and Tawn [16, Appendix A]: Bivariate Normal Results, which also exhibits (3). A proof of (3) and
(4) is also contained in Fung and Seneta [11], whose methodology we shall use below.

Ramos and Ledford [23], continuing the work of Ledford and Tawn [16], studied intensively a family of bivariate
distributions (which they characterised) which satisfied in particular the condition

C(u, u) = u
1
ω L(u) (5)

where L(u) is a slowly varying function (SVF) as u → 0+, and ω ∈ (0, 1], so that, in fact, the value of ω could be used
for comparison of the degree of tail dependence structure between members of the family. The standard bivariate extreme
value models correspond to ω = 1; and independence copula models correspond to ω = 1/2.

BothHashorva [13] andHua and Joe [14] have also pursued this idea. In particular they allude to residual and intermediate
tail dependence respectively. The definition of Hua and Joe [14], which ismore consistent with our theoretical development,
will be adopted here. This paper defines κ = 1/ω in (5) as the (lower) tail order of a copula. The tail order case 1 < κ < 2
is considered as intermediate tail dependence as it corresponds to the copula having some level of positive dependence in
the tail when λL = 0. Thus when λL(u) = C(u, u)/u = uκ−1L(u), 1 < κ < 2, there is some measure of positive association
when λL = 0, but the association is not as strong as when κ = 1, and λL(u) = L(u) → λL > 0, u → 0+, the case of
asymptotic tail dependence.

The standard bivariate normal with correlation coefficient −1 < ρ < 1 corresponds to ω =
1+ρ

2 in (5), and hence ρ > 0
is an instance of intermediate tail dependence.

The motivating idea of building an extension of the normal class of distributions by introducing skewness dates back
to a paper by Azzalini [1], and has developed into an extensive theory presented in a recent monograph by Azzalini and
Capitanio [3].

The bivariate skew normal distribution was introduced in Azzalini and Dalla Valle [4] (which is discussed further in
Azzalini and Capitanio [2]); Azzalini and Capitanio [3] contains a review. A random vector X is said to have a bivariate skew
normal distribution, denoted as X ∼ SN2(α, R), if the probability density of X is

f (x) = 2φ2(x, R)Φ(α⊤x), (6)

where φ2(·, R) is density of a bivariate normal distribution with mean 0 and correlation matrix R and Φ(·) is the cdf of
a univariate standard normal distribution. The correlation matrix R and skew vector α are defined as


1 ρ
ρ 1


, with

−1 < ρ < 1 and α = (α1, α2)
⊤

∈ R2 respectively. Obviously, the (symmetric) bivariate normal is obtained as special
case when α = 0.

The results of Lysenko, Roy and Waeber [19] and Bortot [5] show that the skew normal distribution is tail independent,
that is: λL = limu→0+ λL(u) = 0.

The primary focus of this current note is thus to consider (5) in the setting of the bivariate skew normal distribution,
and specifically to see how the introduction of skewness into the bivariate normal distribution affects (3), and (4), with the
same detail of specific expression of the regularly varying function. We find that the regularly varying index κ depends on
whether α > 0 or α < 0, and these two cases of α require quite different treatments. The case α < 0 is asymptotically
(apart from a constant multiplier) identical to the symmetric bivariate normal case α = 0.

We mention that the treatments of Hashorva [13] and Hua and Joe [14] focus on a general multivariate situation, with
specific attention to the value of κ = 1/ω in (5), and to the limit behaviour of L(u), u → 0+, whereas we provide an explicit
asymptotic form for the function L(·) in (5) for the specific instance of bivariate skew normal in each α case, in parallel
with the expression (4) for the standard bivariate normal. This adds to the understanding of skew normal theory already
extensively exposited in Azzalini and Capitanio [3], and to the understanding of the effect of skewing in general.

While the skew normal is tail independent, its various extensions, see Fung and Seneta [10], Bortot [5] and Padoan [22]
for the bivariate skew t; and Ling and Peng [17] for the bivariate skew slash, are tail dependent. This motivated the ideology
of Fung and Seneta [12] which was published in this same journal and subsequently our analysis of the bivariate skew
normal. The skew t distribution studied there is mixing on the bivariate skew normal, inasmuch as X has this distribution
if X ∼ V−1/2Z where Z ∼ SN2(α, R) where independently V ∼ Γ (η/2, η/2). This distribution is tail dependent i.e. λL > 0
and Fung and Seneta [12] obtained for it the rate of convergence result:

λL(u) − λL = K(η, R, α)u
2
η + O


u

4
η


(7)
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