
Journal of Multivariate Analysis 144 (2016) 176–188

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Quantile regression of longitudinal data with informative
observation times
Xuerong Chen a,∗, Niansheng Tang d, Yong Zhou b,c

a School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
b Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
c School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
d Department of Statistics, Yunnan University, Kunming, Yunnan, China

a r t i c l e i n f o

Article history:
Received 15 April 2013
Available online 2 December 2015

AMS subject classifications:
62J99
62E20
62N99
62G35

Keywords:
Estimating equation
Informative observation times
Longitudinal data
Quantile regression
Resampling method

a b s t r a c t

Longitudinal data are frequently encountered in medical follow-up studies and economic
research. Conditional mean regression and conditional quantile regression are often used
to fit longitudinal data. Many methods focused on the cases where the observation times
are independent of the response variables or conditionally independent of them given the
covariates. Few papers have considered the case where the response variables depend on
the observation times or observation times are randomvariables associatedwith a counting
process. In this paper, we propose a marginally conditional quantile regression approach
for modeling longitudinal data with random observing times and informative observation
times. Estimators of the parameters in the proposed conditional quantile regression are
derived by constructing non-smooth estimating equations when the observation times
follow a counting process. Consistency and asymptotic normality for these estimators are
established. Asymptotic variance is estimated based on a resamplingmethod. A simulation
study is conducted and suggests that the finite sample performance of the proposed
approach is very good, and an illustrative approach is provided.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Longitudinal data arise frequently in many types of studies, for example, medical follow-up studies and observational
investigations. In these longitudinal studies, observations from an individual are collected repeatedly over time. Various
methods including generalized estimating equation and random effects model have been developed to analyze longitudinal
data, see, [2,11]. Recently, non-parametric and semiparametric models for longitudinal data have attracted much attention.
For nonparametric methods see [5,32,23,35,33,27]; for semiparametric approaches see [19,34,12]. One major difficulty in
analyzing longitudinal data is that the observation times are often different across subjects. In [16–18,14], these authors
considered time-varying coefficient regression models for longitudinal data, based on modeling the observation times by
counting process. Under this framework, the observation times were allowed to have arbitrary pattern and to depend on
covariates. These seminal work provided ways for modeling the time-dependent observations, survival data and recurrent
event data in a unified framework.

Most existingmethods assumed that the response variable is independent of observation times completely or condition-
ally independent given the covariates. This assumption may be unrealistic in applications. Informative observation times
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often occur when they are subject or response variable-dependent. For example, consider the bladder cancer study con-
ducted by Veterans Administration Cooperative Urological Research Group (see [26]). In the beginning of this study, all
subjects who participated in the study had superficial bladder tumors and these tumors were removed. During the study,
many patients suffered from multiple recurrences of tumor, and the recurrent tumors were removed during clinical visits.
The clinical visit times and the number of tumors occurred between clinical visits were collected. One aim of this study was
to compare the recurrence rates of the tumors of patients in different treatment groups. It is worth noting that, some sub-
jects had significantly more clinical visits than others, which suggests that the number of clinical visits may contain some
information about the tumor recurrence rates and the clinic visit times may depend on subject or covariate. It is important
to make use of these information for inference on the recurrence rate of tumor. This motivated several authors to consider
to incorporating the informative observation times in longitudinal data analysis. For example, Sun et al. [25] considered a
semiparametric regression approach by using the estimating equation approachwhen the response variable depends on the
observation times. They proposed a marginal model for the response variable process conditional on the covariates and the
observation times, and the observation times were assumed to follow a counting process. Their model is a generalization of
the marginal model proposed by Lin and Ying [14]. Almost all papers on longitudinal data whose observation times follow a
counting process were conducted by conditional mean regression method. Besides the traditional conditional mean regres-
sion method, conditional quantile regression is another important approach used in longitudinal data analysis. When data
contain some outliers or the error distribution is skewed or has heavy tails, the latter method is more robust and efficient
than the former one.

Quantile regression method has been widely applied to the analysis of longitudinal data. He et al. [4] reviewed and
compared three estimators of median regression in linear models for longitudinal data. Motivated by the penalized least
squares for random effects models, Koenker [9] proposed a penalized quantile regression method when there were a large
number of individual fixed effects that can significantly inflate the variability of the estimates of the main covariate effects.
Karlsson [8] considered the nonlinear quantile regression model for longitudinal data. Fenske et al. [3] detected the risk
factor for obesity in early childhood by using quantile regression methods for longitudinal data. Mu and Wei [20] studied
the dynamic quantile regression transformation model for longitudinal data. Liu and Bottai [15] studied the mixed-effects
models with longitudinal data by employing the quantile regression method. Wang and Fygenson [29] developed quantile
regression inference procedures for longitudinal data when some of the measurements were censored by fixed constants.
Wang et al. [31] developed a quantile estimation method for partially linear varying coefficient models using splines. Wang
and Zhu [30] considered a quantile regression approach for longitudinal data by empirical likelihood method.

However, the existing literature of quantile regression for longitudinal data did not consider the case where observation
times are informative. Furthermore, the observations times in the estimating methods are assumed to be independent
of the covariates. To relax these limitations, in this paper, we study the quantile regression method for longitudinal data
when the response variable depends on the observation times which depend on covariates by following a counting process.
To make inference to parameters, estimating equations are constructed. The main difficulties are the Taylor expansion
cannot be used to derive the asymptotic distribution of the estimators and Newton algorithm can no longer be used
to compute the estimators, because the involved estimating equations are non-smooth. In this paper, the key results of
empirical process theory, namely the uniform law of large number and the stochastic equicontinuity, are used to derive
the asymptotic properties of estimators. This method has been used in the literature on non-smooth estimating equations,
see for example, [22,1]. To overcome the computational difficulty, an iterative method based on MM algorithm of quantile
regression (see [6]) is proposed. Because it is not easy to estimate the asymptotic variances of quantile regression estimators
directly, these asymptotic variances are estimated by using the resampling method proposed by Jin et al. [7] in this paper.

This paper is organized as follows. In Section 2, we introduce some notations and describe themodels we consider in this
paper. In Section 3, the inference procedure and the MM algorithm based-iterative method are provided. The consistency,
asymptotic normality of the proposed estimators and the asymptotic variance estimate are given in Section 4. Section 5
reports the simulation results and a real data example is given in Section 6. The conditions and the proofs are presented in
the Appendix.

2. Notation and statistical models

Suppose that a longitudinal study consists of a random sample of n subjects. For subject i, let Yi(t) be the response variable
and Xi(t) be a p-dimensional vector of possibly time-dependent covariates, i = 1, . . . , n. The observations of Yi(t) are taken
at time points ti1 < · · · < tini , where ni is the total number of observations on the ith subject. The number of observations
of the ith subject by time t is Ni(t) =

ni
j=1 I(tij ≤ t) = N∗

i (min(t, Ci)), where Ci is the follow-up time or censoring time for
the ith subject and N∗

i (t) is the underlying counting process of sampling times for subject i. We assume that the covariate
history {Xi(t) : 0 ≤ t ≤ Ci} is observed for each individual.

For inference about the response process Yi(t), if it is completely or conditionally independent ofN∗

i (t), then themarginal
approach is usually used [14]. Otherwise, as described in [25], there are three choices: modeling them jointly, modeling
Yi(t) marginally and then N∗

i (t) conditional on it, or modeling N∗

i (t) marginally and then Yi(t) conditional on it. Our main
interest is on the longitudinal process, rather than the observation times. The evaluation of the covariate effects on the
longitudinal process is also of interest. Hence, we adopt the third choice, that is, wemodel N∗

i (t)marginally and thenmodel
Yi(t) conditionally on it.



Download	English	Version:

https://daneshyari.com/en/article/1145335

Download	Persian	Version:

https://daneshyari.com/article/1145335

Daneshyari.com

https://daneshyari.com/en/article/1145335
https://daneshyari.com/article/1145335
https://daneshyari.com/

