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a b s t r a c t

We present new algorithms for M-estimators of multivariate scatter and location and for
symmetrized M-estimators of multivariate scatter. The new algorithms are considerably
faster than currently used fixed-point and other algorithms. The main idea is to utilize
a Taylor expansion of second order of the target functional and devise a partial
Newton–Raphson procedure. In connectionwith symmetrizedM-estimatorsweworkwith
incomplete U-statistics to accelerate our procedures initially.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Robust estimation of multivariate location and scatter for a distribution P on Rq is a recurring topic in statistics. For
instance, different estimators of multivariate scatter are an important ingredient for independent component analysis
(ICA) or invariant coordinate selection (ICS), see Nordhausen et al. [10] and Tyler et al. [18] and the references therein. Of
particular interest areM-estimators and their symmetrized versions as defined in Sections 2.1 and 2.3, respectively, because
they offer a good compromise between robustness and computational feasibility. The most popular algorithm to compute
M-estimators of multivariate scatter is to iterate a fixed-point equation, see Huber [7, Section 8.11], Tyler [17] and Kent and
Tyler [8]. This algorithm has nice properties such as guaranteed convergence for any starting point. However, as discussed
later, it can be rather slow for high dimensions and large data sets.We introduce two alternativemethods, a gradient descent
method with approximately optimal stepsize and a partial Newton–Raphson method, which turn out to be substantially
faster.

Computation time becomes amajor issue in connectionwith symmetrizedM-estimators. These estimators are important
because of a desirable ‘‘block independence property’’ as explained in Section 2.3; see also Dümbgen [3] and Sirkiä et al. [16].
If applied to a sample of n observations X1, . . . , Xn ∈ Rq, symmetrizedM-estimators utilize the empirical distribution of alln
2


differences Xi − Xj, 1 ≤ i < j ≤ n.
In Section 2 we describe briefly the various M-estimators we are interested in. Then we introduce a general target

functional on the space of symmetric and positive definite matrices in Rq×q which has to be minimized. Section 3 presents
some analytical properties of the latter functional which are essential to understand existing algorithms and to devise
new ones. These parts follow closely a recent survey of multivariate M-functionals by Dümbgen et al. [5]. In Section 4
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we discuss the aforementioned fixed-point algorithm of Kent and Tyler [8] and explain rigorously why it is suboptimal.
Then we introduce two alternative methods, a gradient descent method with approximately optimal stepsize and a partial
Newton–Raphson method. Numerical experiments in Section 5 show that the new algorithms are substantially faster than
the fixed-point algorithms or the algorithms by Arslan et al. [1]. Proofs are deferred to Section 6.
Some notation. The space of symmetric matrices in Rq×q is denoted by Rq×q

sym , and Rq×q
sym,>0 stands for its subset of positive

definite matrices. The identity matrix in Rq×q is written as Iq. The Euclidean norm of a vector v ∈ Rq is denoted by ∥v∥ =
√
v⊤v. For matricesM,N with identical dimensions we write

⟨M,N⟩ := tr(M⊤N) and ∥M∥ :=

⟨M,M⟩,

so ∥M∥ is the Frobenius norm ofM .

2. TheM-estimators and the target functional

LetX1, . . . , Xn be independent randomvectorswith unknowndistribution P onRq. Our task is to define and then estimate
a certain center µ(P) ∈ Rq and scatter matrix 6(P) ∈ Rq×q

sym,>0.

2.1. The scatter-only problem

Let us start with the assumption that µ(P) = 0. To define and estimate a scatter functional 6(P) we consider a simple
working model consisting of elliptically symmetric probability densities fΣ on Rq depending on a parameterΣ ∈ Rq×q

sym,>0:

fΣ (x) = C−1(detΣ)−1/2 exp{−ρ(x⊤Σ−1x)/2},

where ρ : [0,∞) → R is a given function such that C :=

exp{−ρ(∥x∥2)/2} dx is finite. Assuming temporarily that this

working model is correct, one could estimate the true underlying matrix parameter by a maximizer of the corresponding
log-likelihood function for this model,

Σ → −n ln C −
1
2

n
i=1

ρ(X⊤i Σ
−1Xi)−

n
2
ln detΣ .

With the empirical distribution P = n−1
n

i=1 δXi of the data X1, . . . , Xn, the log-likelihood at Σ may be written as
n


ln fΣ dP . Thus maximization of the log-likelihood function over Rq×q

sym,>0 is equivalent to minimization ofΣ → L(Σ,P),
where

L(Σ,Q ) := 2


ln(fIq/fΣ ) dQ

=


{ρ(x⊤Σ−1x)− ρ(x⊤x)}Q (dx)+ ln detΣ

for a generic distribution Q on Rq. We include fIq and ρ(x⊤x), respectively, because often this increases the range of
distributions Q such that L(Σ,Q ) is well-defined in R. If L(·,Q ) has a unique maximizer over Rq×q

sym,>0, we denote it with
6(Q ). The resultingmappingQ → 6(Q ) is called anM-functional of scatter. In particular,6(P) serves as an estimator of the
scatter parameter6(P), assuming that both exist. If P happens to have a density fΣ∗ in our workingmodel, then6(P) = Σ∗.
If P is merely elliptically symmetric with center 0 and scatter matrixΣ∗, for instance, if it has a density f of the form

f (x) = (detΣ∗)−1/2g∗(x⊤Σ−1∗ x)

with g∗ : [0,∞)→ [0,∞), then at least 6(P) = γΣ∗ for some γ > 0.
An important example is multivariate t distributions with ν > 0 degrees of freedom. Here ρ = ρν,q with

ρν,q(s) = (ν + q) ln(ν + s) for s ≥ 0. (1)

Note that ρ(x⊤Σ−1x)− ρ(x⊤x) equals (q+ ν) ln{(ν + x⊤Σ−1x)/(ν + x⊤x)}, a bounded and smooth function of x ∈ Rq.

2.2. The location–scatter problem

Now our working model consists of probability densities fµ,Σ on Rq with parameters µ ∈ Rq andΣ ∈ Rq×q
sym,>0, namely,

fµ,Σ (x) = C−1(detΣ)−1/2 exp

−ρ{(x− µ)⊤Σ−1(x− µ)}/2


.



Download English Version:

https://daneshyari.com/en/article/1145337

Download Persian Version:

https://daneshyari.com/article/1145337

Daneshyari.com

https://daneshyari.com/en/article/1145337
https://daneshyari.com/article/1145337
https://daneshyari.com

