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a b s t r a c t

The specification of multivariate prediction regions, having coverage probability closed
to the target nominal value, is a challenging problem both from the theoretical and the
practical point of view. In this paper we define a well-calibrated multivariate predictive
distribution giving suitable conditional prediction intervals with the desired overall
coverage accuracy. This distribution is the extension in the multivariate setting of a
calibrated predictive distribution defined for the univariate case and it is found on the
idea of calibrating prediction regions for improving the coverage probability. This solution
is asymptotically equivalent to that one based on asymptotic calculations and, whenever
its explicit computation is not feasible, an approximation based on a simple bootstrap
simulation procedure is readily available. Moreover, we state a simple, simulation-based,
procedure for computing the associated improved conditional prediction limits.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Predictive inference for an unobserved multivariate random variable may be of considerable interest in a number of
application, such as the specification of simultaneous prediction intervals for future time series observations and the
construction of prediction regions for observables from multivariate models. In this paper, prediction is considered from
the frequentist perspective and the aim is to define a well-calibrated multivariate predictive distribution giving conditional
prediction intervals, and in particular conditional prediction limits, with overall coverage probability closed to the target
nominal value. The associated prediction regions are not necessarily of rectangular form, in the two-sided case, or of semi-
infinite rectangular form, in the one-sided case. This is an important point and it will be appropriately discussed throughout
the paper.

Let (Y , Z) be a continuous random vector having joint density function p(y, z; θ), with θ ∈ Θ ⊆ Rd, d ≥ 1, an unknown
d-dimensional parameter; Y = (Y1, . . . , Yn), n ≥ 1, is observable, while Z = (Z1, . . . , Zm), m ≥ 1, denotes a future, or
yet unobserved, random vector. This is a fairly general formulation which includes both the simple case with Y1, . . . , Yn
and Z independent, identically distributed, multivariate random variables and the more general situation with dependent
Y and Z and, in particular, with Y and Z defined within a stochastic process model. For ease of exposition we consider
Y = (Y1, . . . , Yn) as a random vector with density f (·; θ) and Z as an independent future random vector with density
g(·; θ), possibly different from f (·; θ), with θ the same d-dimensional parameter as before; G(·; θ) indicates the distribution
function of Z . We also assume that f (·; θ), g(·; θ) and G(·; θ) are sufficiently smooth functions of the parameter θ . The
extension of the results to the case with dependent Y and Z is considered in the final part of the paper.
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Although prediction problems may be tackled with different objectives, the aim here is to define an α-prediction region
for Z , that is a random set R(Y , α) ⊂ Rm, depending on the observable sample Y and on the nominal coverage probability
α, such that

PY ,Z {Z ∈ R(Y , α); θ} = α, (1.1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is called coverage probability and it is calculated with
respect to the joint distribution of (Z, Y ); moreover, it can be rewritten as EY [PZ {Z ∈ R(Y , α); θ}; θ ], where the expectation
is with respect to Y and PZ {·; θ} is the probability distribution for Z .

Given a suitable predictive probability distribution for Z , namely P̃Z {·; Y }, defined as an estimator for the true PZ {·; θ}

based on the sample Y , we may define an α-prediction region for Z as a set R̃(Y , α) ⊂ Rm such that

P̃Z {Z ∈ R̃(Y , α); Y } = α.

Under this respect, we aim at introducing a predictive distribution function such that the corresponding α-prediction region
R̃(Y , α) fulfils (1.1) exactly or with a high degree of accuracy, for each α ∈ (0, 1).

Although there are some special cases where there is an exact solution to (1.1), these situations are extremely rare. Thus,
in general, we look for approximate solutions satisfying (1.1) almost exactly, for each α ∈ (0, 1). The easiest way for making
prediction on Z is by using the estimative predictive distribution PZ {·; θ̂}, where the unknown parameter θ is substituted
with an asymptotically efficient estimator θ̂ based on Y , such that θ̂ − θ = Op(n−1/2); we usually consider the maximum
likelihood estimator or any asymptotically equivalent alternative estimator. However, it is well-known that the estimative
α-prediction regions Re(Y , α) are not entirely adequate predictive solutions, since their coverage probability differs from α
by a term usually of order O(n−1) and prediction statements may be rather inaccurate for small n. In fact, this naive solution
underestimates the additional uncertainty introduced by assuming θ = θ̂ .

Concerning the univariate case, Barndorff-Nielsen and Cox [1,2], Ueki and Fueda [9] and Vidoni [10,11] suggest a way
to correct, by means of asymptotic calculations, the quantiles of the estimative predictive distribution, thus obtaining
prediction intervals with a coverage error of order o(n−1). A calibrating approach, useful in the multivariate case as well,
has been suggested by Beran [3] and applied, for example, by Hall et al. [6], using a bootstrap procedure for improving the
estimative prediction intervals. The key idea, behind this approach, is to determine a suitable value ᾱ such that the coverage
probability of the estimative, recalibrated, prediction region Re(Y , ᾱ) is equal or close to the target value α. The effect of
(bootstrap) calibration is that of reducing the magnitude of the coverage error but it is valid for a specific α and it does not
provide a general solution to the problem, such as those based on the notion of predictive distribution.

Recently, Fonseca et al. [5] extend the calibrating procedure to predictive distribution functions in such away that the as-
sociated prediction intervals have coverage probability equal or close to the target value. This solution has similarities with
that one specified by Lawless and Fredette [8], involving (approximate) pivotal quantities, but it has the advantage that,
whenever its computation is not feasible, it can be approximated using a suitable bootstrap simulation procedure or consid-
ering high-order asymptotic expansions, giving the same improved predictive distributions already known in the literature.

In the present paper, this result is properly extended to deal with multivariate prediction problems. In particular,
a well-calibrated multivariate predictive distribution is derived. We prove that the associated joint predictive density
is asymptotically equivalent to that one proposed by Corcuera and Giummolè [4], which gives improved conditional
prediction limits. This new solution, contrary to the Corcuera and Giummolè’s one, has a simple and intuitive form and,
when computations are hard to perform, it is readily available an approximation based on bootstrap simulation methods.
Furthermore, generalizing a result presented in [9], we state a simple, simulation-based, procedure for computing the
associated improved conditional prediction limits. The paper is organized as follows. Section 2 reviews some known results
on improved predictive procedures. Section 3 introduces the new approach based on the calibrated multivariate predictive
distribution. Section 4 presents the procedure for calculating the improved conditional prediction limits, following the Ueki
and Fueda’s approach, and Section 5 briefly considers the extension to the case of dependent observations. Finally, Section 6
is dedicated to a simple example concerning autoregressive time series models.

2. Review on improved multivariate prediction

Let us review the calibrated predictive distribution function proposed by Fonseca et al. [5] for the univariate case, that
is for m = 1. Let us consider the estimative α-prediction limit q̂(α) = q(α; θ̂ ), defined as the α-quantile of the estimative
distribution function G(z; θ̂ ), such that G{q̂(α); θ̂} = α. The associated coverage probability is

PY ,Z {Z ≤ q̂(α); θ} = EY [G{q̂(α); θ}; θ ] = C(α; θ).

By substituting α with G(z; θ̂ ) in C(α; θ), we obtain

Gc(z; θ̂ , θ) = C{G(z; θ̂ ); θ},

which is a predictive distribution function if C(·; θ) is a sufficiently smooth function. The associated density function is a
suitable modification of the estimative predictive density g(z; θ̂ ) given by

gc(z; θ̂ , θ) = g(z; θ̂ )C ′
{G(z; θ̂ ); θ},
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