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a b s t r a c t

This paper considers the uniform strong consistency of the error cumulative distribution
function (CDF) estimator. Under appropriate assumptions, the classical Glivenko–Cantelli
Theorem is obtained for the residual based empirical error CDF in the nonlinear autore-
gressive time series.
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1. Introduction

Let {Xi, i = 0, ±1, ±2, . . .} be a strictly stationary process of real random variables obeying the ergodic model

Xi = rθ (Xi−1, . . . , Xi−p) + εi (1.1)

for some θ = (θ1, . . . , θq)
⊤

∈ Θ ⊂ Rq, where rθ , θ ∈ Θ , is a family of knownmeasurable functions from Rp
→ R. Moreover,

the errors {εi} are assumed to be i.i.d. random variables with mean being 0 and common cumulative distribution function
(CDF) F , and Xi−1, . . . , Xi−p are independent of {εi, i = 0, ±1, ±2, . . .}.

The monograph by Tong [8] represents a good account of nonlinear time series models of type (1.1). The error density
estimation inmodel (1.1) has been considered in Liebscher [7], Cheng and Sun [4], and Cheng [3]. The strong consistency and
asymptotic normality of the error density estimator are obtained in Liebscher [7]. Cheng and Sun [4] consider the problem
of fitting an error density to the goodness-of-fit test of the errors, and obtain the asymptotic properties of the test. Cheng [3]
develops the asymptotic distribution of the maximum of a suitably normalized deviation of the density estimator from the
expectation of the kernel error density (based on the true error), which is shown to be the same as in the case of the one
sample set up, which is given in Bickel and Rosenblatt [2]. Here, we will continue to develop the uniform strong consistency
of the CDF estimator in model (1.1). For the Lipschitz continuous CDF F , we shall extend the classical Glivenko–Cantelli
Theorem to the residual based empirical error CDF for the nonlinear autoregressive model (1.1).

The paper is organized as follows. In Section 2 we first introduce some basic assumptions on the model (1.1), and the
estimator θ̂ for θ ; define the CDF estimator F̂ based on the residuals of model (1.1). Then we describe the main result.
Section 3 provides the details of the proof.
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2. Basic assumptions and estimators

In this section we first introduce some basic assumptions.
For the autoregression function rθ in model (1.1), we have the following assumptions.

Assumption 1. Let U ⊂ Θ ⊂ Rq be an open neighborhood of θ . We assume there exists a function M such that, for all
y ∈ Rp, θ∗

= (θ∗

1 , . . . , θ∗
q ) ∈ U, j = 1, . . . , q, ∂

∂θj
rθ∗(y)

 ≤ M(y),

and EM(Xi−1, . . . , Xi−p) < +∞.

For 1 ≤ i ≤ n, set

Mi = M(Xi−1, . . . , Xi−p).

Remark 1. It is easy to see that εi and Mi are independent, and

E(Mi) = E

M(X1, . . . , Xp)


< ∞.

By Theorem 2.3 in Fan and Yao [5], we also have that

1
n

n
i=1

Mi → E(M1), a.s. (2.1)

Assumption 2. Suppose that we observe X1−p, . . . , Xn. Let θ̂ = (θ̂1, . . . , θ̂q) be an estimator for θ with the property: θ̂ being
a strong consistent estimator (for θ ) which satisfies the law of iterated logarithm.

Therefore, under Assumption 2, there exists a constant C1(0 < C1 < ∞) such that

lim sup
n→∞


n

log log n

θ̂ − θ

 ≤ C1 a.s., (2.2)

where
θ̂ − θ

 =

q
j=1(θ̂j − θj)2.

Remark 2. The above assumption on θ̂ holds for least square estimator under certain conditions (see Klimko andNelson [6]).
This assumption is also used in Liebscher [7].

Based on the estimator θ̂ , we define the residuals

ε̂i := Xi − rθ̂ (Xi−1, . . . , Xi−p), i = 1, 2, . . . , n. (2.3)

Note that ε1, ε2, . . . , εn are i.i.d. with the unknown CDF F . Let Fn denote the empirical distribution function, i.e.,

Fn(t) =
1
n

n
i=1

I(εi ≤ t), t ∈ R1,

where I denotes the indicator function.
The classical Glivenko–Cantelli theorem says that Fn(t) converges almost surely (a.s.) to F(t) uniformly in t ∈ R1, i.e.,

sup
t∈R1

|Fn(t) − F(t)| → 0, a.s. (2.4)

Notice that Fn is infeasible for model (1.1), since εi, 1 ≤ i ≤ n are not observable. Here, based on residuals ε̂i (1 ≤ i ≤ n),
we construct empirical distribution function F̂n as follows:

F̂n(t) =
1
n

n
i=1

I(ε̂i ≤ t), t ∈ R1.

Wewill consider the uniform strong convergence of F̂n for F . The main result is the following Glivenko–Cantelli Theorem
for the estimator F̂n.
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