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a b s t r a c t

The concept of seemingly unrelated models is used for multivariate observations when
the components of the multivariate dependent variable are governed by mutually differ-
ent sets of explanatory variables and the only relation between the components is given
by a fixed covariance within the observational units. A multivariate weighted least squares
estimator is employed which takes the within units covariance matrix into account. In an
experimental setup, where the settings of the explanatory variables may be chosen freely
by an experimenter, it might be thus tempting to choose the same settings for all compo-
nents to end up with a multivariate regression model, in which the ordinary and the least
squares estimators coincide. However, we will show that under quite natural conditions
the optimal choice of the settings will be a product type design which is generated from
the optimal counterparts in the univariate models of the single components. This result
holds even when the univariate models may change from component to component. For
practical applications the full factorial product type designs may be replaced by fractional
factorials or orthogonal arrays without loss of efficiency.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In an experiment often more than one dependent variable is observed for each observational unit. Sometimes for these
dependent components the explanatory variablesmay be adjusted separately. For example, onemight be interested in some
processes over time like pharmacokinetics and pharmacodynamics, where observations can be made at the same subjects,
but where the time points need not be identical for the measurements of the different quantities within one subject. As
typically observations are correlated within units, the data are properly described by a multivariate model with separate
sets of explanatory variables.

Such models have been introduced by Zellner [8] in econometrics and have been called seemingly unrelated regression
(SUR) models, because the corresponding univariate models for the components do not seem to have anything in common
at a first glance. However, it has been pointed out that the correlation between the variables could be employed to transfer
useful information from one component to another. Since its introduction various modifications have been considered in
observational studies, and the corresponding statistical analysis has been well developed.

In experimental situations these seemingly unrelated regression models have been used less frequently, and, to the best
knowledge of the authors, no explicit result is available for the construction of optimal designs in such experiments. There
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is a certain belief that it is sufficient to choose optimal marginal designs for the single components. However, we will show
in this paper that additionally the joint distribution of the marginal designs plays an important role, because information
may be transferred between the components. In particular, we will establish that product type designs are optimal if all
univariatemodels related to the components contain a constant term (intercept or grandmean). The optimal designs for the
multivariate model will be constructed as products of their corresponding counterparts which are optimal in the univariate
models of the components. These full factorial product type designs may be replaced by fractional factorials or by suitable
orthogonal arrays, which are also optimal, because only the two-dimensional marginals of the designs are involved in the
optimization. We will also show that these designs outperform competitors which do not share the factorial structure.

Proofs will be based on Fedorov’s [1] multivariate versions of the equivalence theorems for optimal designs. Some
techniques concerning product type designs are adopted from Schwabe [5], and there seems to be a relation between
univariate additive models and the seemingly unrelated linear models treated here. However, in contrast to the univariate
additive case the optimality of product type designs is not restricted to the commonly used D-criterion, but carries over to
linear criteria and, in particular, to the A- and IMSE-criteria.

The paper is organized as follows: in the second section we specify themodel and collect some relevant issues of optimal
designs in the third section. In Section 4 we present the optimality of product type designs and illustrate their performance
by an example in the bivariate case in Section 5. Section 6 contains some discussion of the results. Technical proofs are
deferred to Appendix.

2. Model specification

We consider multivariate linear models in whichm-dimensional observations Yi depend on some explanatory variables
for n experimental units i = 1, . . . , n. The components (variables) Yij of the multivariate observations Yi = (Yi1, . . . , Yim)⊤

are assumed to be seemingly unrelated. This means that the settings xij of the explanatory variables may differ across
the components. More generally, we even allow for different univariate linear models for the components, i.e. different
explanatory variables, different regression functions and different experimental regions. This model approach covers and
generalizes the concept of seemingly unrelated regression (SUR) by Zellner [8] and may also contain components of the
analysis of variance type or with both qualitative and quantitative factors of influence.

For each component j the observation Yij of unit i is specified by a linear model

Yij =

pj
ℓ=1

fjℓ(xij)βjℓ + εij = fj(xij)⊤βj + εij, (1)

where fj = (fj1, . . . , fjpj)
⊤ are known regression functions of the experimental setting xij, βj = (βj1, . . . , βjpj)

⊤ are unknown
parameters and pj is the dimension for the jth component. The experimental setting xij may be chosen from an experimental
region Xj.

The combined observational vector Yi can then be written as a multivariate linear model

Yi = f(xi)⊤β + εi, (2)

where f is the block diagonal multivariate regression function

f(x) = diag (fj(xj))j=1,...,m =

f1(x1) · · · 0
...

. . .
...

0 · · · fm(xm)

 (3)

for the multivariate experimental setting x = (x1, . . . , xm), β = (β⊤

1 , . . . ,β⊤

m)⊤ is the stacked parameter vector of dimen-
sion p =

m
j=1 pj for all components and εi = (εi1, . . . , εim)⊤ the multivariate vector of error terms for unit i. We assume

additionally that the components xij of the multivariate experimental setting xmay be chosen independently for each com-
ponent resulting in a rectangular form of the experimental region, x ∈ X = ×

m
j=1 Xj. To assure estimability it is further

assumed that the components of fj are linearly independent functions on Xj for each j = 1, . . . ,m, which implies that the
components of f are linearly independent functions on X.

To complete the model the εi are assumed to be zero mean error vectors with homogeneous non-singular covariance
matrix Σ = Cov (εi) which are uncorrelated across the units. Hence, the observational vectors Yi inherit the covariance
structure from the error terms, Cov (Yi) = Σ, and the covariance structure does not depend on the experimental settings xi.

Typically observations will be collected in a data matrix with individual observational vectors Yi as rows. Following
Zellner [8] the observational vector of the whole experiment is usually obtained by vectorization of the data matrix, i.e. by
stacking the columns on top of each otherwhich represent the components. This emphasizes the relation of themultivariate
model to its univariate components.

In contrast to this common approachwewill vectorize the transposed datamatrix by stacking the individual observation
Yi on top of each other: for the whole experiment denote the stacked vectors of all observations and all error terms
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