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a b s t r a c t

We study the concept of half-region depth, introduced in López-Pintado and Romo (2011).
We show that for a wide variety of standard stochastic processes, such as Brownianmotion
and other symmetric stable processes with stationary independent increments tied down
at 0, half-region depth assigns depth zero to all sample functions. To alleviate this difficulty
we introduce a method of smoothing, which often not only eliminates the problem of zero
depth, but allows us to extend the theoretical results on consistency in that paper up to the
√
n level for many smoothed processes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and some notation

A number of depth functions are available to provide an ordering of finite dimensional data, andmore recently in [14] the
interesting notion of half-region depth for stochastic processes was introduced. This depth applies to data given in terms of
infinite sequences, as functions defined on some interval, and even in more general settings.

In this paper we focus on three items. The first is to show (see Section 2) that for many standard data sources this depth
is identically zero, and hence one needs to be cautious when employing it. In particular, we will see sample continuous
Brownian motion, tied down to be zero at t = 0 with probability one, assigns zero half-region depth to all functions
h ∈ C[0, 1], but we show this sort of behavior also holds for many other random processes widely used to model data in a
variety of settings. A second itemwe examine is how the difficulty of zero half-region depth can be avoided, and fortunately
in many situations smoothing the process by adding an independent real valued random variable Z with a density as in (28)
(also see Proposition 4) changes things dramatically for half-region depth. In particular, it allows us to establish positivity
for this depth and, as can be seen from Remark 4, the smoothed data remains a good approximation of the original input
by taking E(|Z |) small. Using Proposition 4 as in Remark 5, we also provide some sufficient conditions where smoothing is
unnecessary for positive half-region depth.

The third item we consider involves limit theorems for the empirical half-region depth of these smoothed processes,
and Theorem 1 is a basic consistency result with Theorem 2 and Corollary 6 providing some rates of convergence for this
consistency. Moreover, a sub-Gaussian tail bound is obtained in Corollary 6. Theorem 3 implies a consistency result and√
n-rates for half-region depth over all finite subsets of T of cardinality less than or equal to a fixed r . Hence, Theorem 3

extends the consistency result for random Tukey depth in [2,3] to half-region depth under weaker conditions, i.e. less
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independence is used and the depth is computed using multi-dimensional marginals rather than those of one dimension.
Now we turn to the notation used throughout the paper, and following that we indicate some additional details on our
results and how they relate to other recent papers.

To fix some notation let X := {X(t) = Xt : t ∈ T } be a stochastic process on the probability space (Ω,F , P), all of whose
sample paths are in M(T ), a linear space of real valued functions on T which we assume to contain the constant functions.
To handle measurability issues, we also always assume that h ∈ M(T ) implies

sup
t∈T

h(t) = sup
t∈T0

h(t) < ∞, (1)

where T0 is a fixed countable subset of T . Typical examples of M(T ) are the uniformly bounded continuous functions on T
when T is a separable metric space, or the space of cadlag functions on T for T a compact interval of the real line. In either
of these situations T0 could be any countable dense subset of T . It should also be observed that since (1) holds on the linear
space M(T ), then h ∈ M(T ) implies

inf
t∈T

h(t) = inf
t∈T0

h(t) > −∞ and ∥h∥∞ ≡ sup
t∈T

|h(t)| = sup
t∈T0

|h(t)| < ∞. (2)

If g, h : T → R and S ⊆ T , let g ≼S h (resp., g ≽S h), denote that g(t) ≤ h(t) (resp., g(t) ≥ h(t)) for all t ∈ S. When S = T
we will simply write g ≼ h (resp., g ≽ h). Then, for a function h ∈ M(T ), the half-region depth with respect to P is defined
as

D(h, P) := DHR(h, P) := min(P(X ≽ h), P(X ≼ h)). (3)

To simplify, we also will write D(h) for D(h, P) when the probability measure P is understood. Since M(T ) is a linear space
with (1) and (2) holding, and the sample paths of the stochastic process X are in M(T ), we see for each h ∈ M(T ) that

{X ≼ h} = {X ≼T0 h} and {X ≽ h} = {X ≽T0 h}. (4)

Thus the events in (3) are in F and the probabilities are defined.
Assume that X, X1, X2, . . . are i.i.d. copies of the process X defined on the probability space (Ω,F , P) suitably enlarged,

if necessary, such that all sample paths of each Xj are in M(T ). Then, the empirical half-region depth of h ∈ M(T ) based on
the i.i.d. copies X1, . . . , Xn is

Dn(h) = min


1
n

n
j=1

I(Xj ≽ h),
1
n

n
j=1

I(Xj ≼ h)


. (5)

Throughout this paper to be certain the half-region depth is not degenerate at zero the smoothing we use is as in
Proposition 4. However, the reader may care to notice that in Theorems 1 and 2 we actually assume more on the density
fZ (·), but those assumptions are only required to facilitate their proofs. The positivity of the half-region depth already holds
under the weaker assumptions on fZ (·) of Proposition 4. Other forms of smoothing may also be beneficial when seeking to
avoid the problem of the depth being degenerate at zero, and some work is currently being done in this direction. To deal
with the 0-depth problem López-Pintado and Romo [14] consider another depth, which they call modified half-region depth
(see the definition below). There the depth itself is changed so as to be less restrictive and non-degenerate at zero, whereas
here we retain the depth, but apply it to data which has been smoothed. One reason which motivates our choice, at least
for us, is that there are examples where the ordering produced by modified half-region depth produces multiple medians,
contrary to what onewould intuitively expect. Furthermore, half-region depth typically orders the original paths or suitably
smoothed paths in these examples so as to identify the intuitive median as being the unique median. To make this more
precise, we consider the following simple examples.

In the first two examples T = [0, 1], ρ(·) denotes Lebesgue measure on T , and we assume the sample functions of the
stochastic process {Y (t) : t ∈ T } are jointly measurable in (t, ω)with respect to Lebesgue measure on T and the probability
P = L(Y ). Then, if h(·) is a Lebesgue measurable function on T , the ρ-modified half-region depth of h(·) is

MD(h, P, ρ) = min


T
P(h(t) ≤ Y (t))dρ(t),


T
P(h(t) ≥ Y (t))dρ(t)


.

Example 1. If supt∈[0,1] |Y (t)| ≤ λ < ∞ and Y (t) has continuous distribution function for all t ∈ [0, 1], then modified
half-region depth based on Lebesgue measure on [0, 1], never has a unique median. For any subset A ⊂ [0, 1] with measure
1/2, one considers hA := λ(2IA − 1). Then, for each t ∈ [0, 1], we have P(Y (t) = −λ) = 0 and that

P(Y (t) ≤ hA(t)) = IA(t)+ IAc (t)P(Y (t) = −λ) = IA(t).

Similarly, P(Y (t) ≥ hA(t)) = IAc (t), and therefore the modified half-region depth of hA is 1/2. Since, 1/2 is the maximal
value of this depth when the distribution function of Y (t) is continuous for all t , hA is a median. In particular, among these
medians we have h(0,1/2) · h(1/2,1) = 0, and if the distribution of Y is symmetric enough around the zero function, neither of
these functions seems an intuitivemedian. Furthermore, if we smooth the process Y as in Proposition 4, then the half-region
depth of the smoothed process is positive, but unless we know more about the Y process it is still hard to determine the
median for this half-region depth. Our next two examples are more specific, and allow us to make such determinations.



Download	English	Version:

https://daneshyari.com/en/article/1145349

Download	Persian	Version:

https://daneshyari.com/article/1145349

Daneshyari.com

https://daneshyari.com/en/article/1145349
https://daneshyari.com/article/1145349
https://daneshyari.com/

