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a b s t r a c t

We consider a semi-parametric regression model with responses missing at random and
study the rank estimator of the regression coefficient. Consistency and asymptotic normal-
ity of the proposed estimator are established. Monte Carlo simulation experiments show
that the proposed estimator ismore efficient than the least squares estimatorwhenever the
error distribution is heavy tailed or contaminated. When the errors follow a normal distri-
bution, these simulation experiments show that the rank estimator can be more efficient
than its least squares counterpart for cases with large proportion of missing responses.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent decades, the problemofmissing data has garnered a lot of attentionwithin the statistical community. Responses
may be missing for a number of common reasons. These include equipment malfunction, contamination of samples, manu-
facturing defects, drop out in clinical trials, weather conditions, incorrect data entry, etc. In this paper, we consider missing
responses in the context of regression analysis. We will do so under the most commonly used missing data mechanism
assumption which asserts that the responses are missing at random (MAR) as discussed in [23]. Under MAR, the probability
that a response variable is observed can depend only on the values of those other variables that have been observed.

Consider the linear semi-parametric regression model

Yi = Xτ
i β + g(Ti) + εi, 1 ≤ i ≤ n, (1.1)

where β ∈ B ⊂ Rp is a vector of parameters, Xi’s are i.i.d. p-variable random covariate vectors, Ti’s are i.i.d. univariable
random covariates defined on [0, 1], the function g : [0, 1] → R is unknown, and the model errors εi are independent
with conditional mean zero given the covariates. Also, E(ε2

i |Zi) > 0 with Zi = (Xi, Ti). In this paper, we are interested
in inferences about the true value β0 of the parameter β, when there are missing responses in the linear semi-parametric
model (1.1).
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For data without missingness, the partial linear semiparametric model given in (1.1) has been used to study a number of
real life problems. For instance, an application of (1.1) to a mouthwash experiment was given by Speckman [24] where
the model was estimated using kernel smoothing. A version of (1.1) set up as semi-parametric mixed model was used
by Zeger and Diggle [35] for analyzing the CD4 cell count in HIV seroconverters where they used back-fitting along with
cross-validation to estimate the model. A marketing price–volume example is studied in [6] using a penalized least squares
approach. Model (1.1) has also been applied in several fields such as biometrics [5] and econometrics [14]. Other notable
works include [9,20,22] among others.

Wang and Sun [28] studied the least squares estimator of the regression coefficient β in model (1.1) under the MAR
assumption. Considering the same setting, Wang et al. [26] developed inference tools in missing response case for the mean
ofY basedon the least squares estimation approach andunder theMARassumption. Onemethod for constructing confidence
intervals for the true mean of Y is the empirical likelihood method introduced by Owen [18]. This approach is used to
investigate a variety of statistical problems by Hall and La Scala [7], Chen and Hall [2], Kitamura [13], and Peng [19], Xue
and Zhu [32], Xue and Zhu [33], Xue and Zhu [34] to mention a few. These works demonstrate that the method of empirical
likelihoodhas a number of advantages overmethods such as those based onnormal approximations or the bootstrap. Studies
that used this approach to study (1.1) under the MAR assumption include [27,26,25,30].

When dealing with missing data, the main approach is to impute a plausible value for each missing datum and then
analyze the results as if they were complete. In most of the regression problems, the commonly used approaches include
linear regression imputation [8], nonparametric kernel regression imputation [3,27], and semi-parametric regression impu-
tation [28]. An alternative approach for handlingmissing data is the inverse probability weighting. This approach has gained
considerable attention as a way to deal with missing data problems. For a discussion of this approach, see [21,36,29,26] and
references therein. As pointed out byWang and Sun [28], for missing problems, the inverse probability weighting approach
usually depends on high dimensional smoothing for estimating the completely unknown propensity score function. This
suffers from the curse of dimensionality that may restrict the use of the resulting estimator. One way to avoid such a problem
is to use the inverse marginal probability weighted method proposed by Wang et al. [26].

In this paper, we study the rank estimator of β in model (1.1) with MAR responses in an effort to mitigate the adverse
effects of heavy tails and gross outliers on the least squares estimator of β. To that end, β will be defined as theminimizer of
the general rank dispersion function proposed by Jaeckel [11], where themissing responses are imputed either using simple
imputation or inverse marginal probability weighting and the function g is estimated using kernel smoothing.

The paper is organized as follows.We define our estimator and give some preliminary results in Section 2. The asymptotic
normality of the proposed estimator is established in Section 3. Section 4 addresses some practical issues encountered in the
estimation process including the estimation of g and standard errors of estimated coefficients. Section 5 gives a simulation
study and real data examples to illustrate the use of the proposed estimator. Assumptions used in our development as well
as sketch of proofs of our results are given in the Appendix.

2. Rank estimator

In model (1.1), consider the case where some values of Y in the sample of size n may be missing, but X and T are fully
observed. That is, we obtain the following incomplete observations

(Yi, δi,Xi, Ti), i = 1, 2, . . . , n

from (1.1), where Xi’s and Ti’s are observed, and

δi =


0, if Yi is missing,
1, otherwise.

As discussed above, we assume that Y is missing at random (MAR). The MAR assumption implies that δ and Y are
conditionally independent given X and T , that is, P(δ = 1|Y , Z) = P(δ = 1|Z), where Z = (X, T ) as defined above.
Please see [16] for an in-depth discussion regarding the MAR assumption.

Denote ∆(z) = P(δ = 1|Z = z), σ 2(Z) = E(ε2
|Z), and Γ (t) = P(δ = 1|T = t). Now consider the rank objective

function proposed by Jaeckel [11]

DC
n (β) =

1
n

n
i=1

ϕ
R(ei(β))

n + 1


ei(β), (2.1)

where ei(β) = δiεi and R(ei(β)) is the rank of ei(β) among e1(β), . . . , en(β). Due to the MAR assumption E[ei(β)|Zi] = 0.
Note that in the expression of DC

n (β) in (2.1), β and g are unknown. So, before dealing with the estimation of β, let us
first consider the estimation of g based on the completely observed data; that is, estimating g as a known function of t but
unknown with respect to β. As discussed in [26], pre-multiplying (1.1) by the observation indicator and taking conditional
expectation given T = t , we have

E[δiYi|Ti = t] = E[δiXi|Ti = t]β + E[δi|Ti = t]g(t).
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