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a b s t r a c t

We study the accuracy of the discrete least-squares approximation on a finite-dimensional
space of a real-valued target function from noisy pointwise evaluations at independent
random points distributed according to a given sampling probability measure. The conver-
gence estimates are given inmean-square sensewith respect to the samplingmeasure. The
noise may be correlated with the location of the evaluation and may have nonzero mean
(offset). We consider both cases of bounded or square-integrable noise/offset. We prove
conditions between the number of sampling points and the dimension of the underlying
approximation space that ensure a stable and accurate approximation. Particular focus is
on deriving estimates in probability within a given confidence level. We analyze how the
best approximation error and the noise terms affect the convergence rate and the over-
all confidence level achieved by the convergence estimate. The proofs of our convergence
estimates in probability use arguments from the theory of large deviations to bound the
noise term. Finally we address the particular case of multivariate polynomial approxima-
tion spaces with any density in the beta family, including uniform and Chebyshev.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The motivations of our analysis come from the development of discrete least-squares approximation methods for
functions depending on a multivariate random variable distributed according to a known probability measure. This topic
falls at the intersection of approximation theory and learning theory [6,7], and is related to nonparametric regression with
random design [10] and statistical learning theory [21]. More specifically, our framework is an instance of the projection
learning problem (or improper function learning problem) described in [6,18,19].

We focus on the discrete least-squares approximation of a target function on a given finite dimensional (linear) vector
space using pointwise evaluations at independent and randomly selected points, identically distributed according to
the underlying probability measure. In particular, we are interested in the case of discrete least-squares projection on
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not necessarily bounded multivariate approximation sets, i.e. the minimizer of the discrete least-squares problem is not
constrained to be in a compact subset. Two situations might occur, depending on the context and on the origin of the
evaluations of the target function: noiseless evaluations or noisy evaluations. The former situation arises for example in
an abstract modeling context, where round-off or other discretization errors can be properly controlled. The latter situation
typically arises when dealing with experimental data, which are polluted by measurement and/or systematic errors.

A vast literature is available for discrete least-squares approximations on compact sets or linear vector spaces in the
noisy case. In the case of linear vector spaces, we mention the bound in [10, Theorem 11.3] or those in [3,2], which hold in
expectation under the assumption that the target function itself is bounded. Often a truncation operator has to be used to
obtain those bounds. Moreover, these results are nonoptimal in the noiseless case, as the best approximation error in the
subspace is not recovered when the amount of noise tends to zero.

The stability and accuracy of discrete least squares on finite-dimensional vector spaces in the noiseless and noisy cases
have been recently analyzed in several works [5,16,4,15,12]. It is shown that optimal convergence rates can be recovered in
the noiseless case if a suitable relation between the number of evaluations and the dimension of the approximation space
is enforced. Moreover, such relation guarantees stability of the discrete projection with high probability.

Generalizations of the previous analyses to the noisy case have been presented as well in the aforementioned works.
In the particular case of bounded noise (stochastic or deterministic) with zero mean, an estimate in expectation has
been proposed in [5]. Estimates in expectation with the deterministic noise model have been proven in [4]. Estimates in
probability have been proven in [4] but using the best approximation error in L∞ rather than L2 and focusing only on the
deterministic noise model. In both the noiseless and noisy cases, the analyses in [5,4] rely on the Chernoff bounds for sums
of random matrices proven in [1,20]. The analysis in [16] uses different techniques to derive a convergence estimate in
probability, and covers only the noiseless case.

The purpose of the present work is to derive new convergence estimates in probability and in expectation, in the general
case of noise of stochastic typewith nonzeromean, that recover optimal convergence rates in the limit of zero noise.We split
the noise into two parts: the conditional expectation of the noise w.r.t. the samplingmeasure, that we name in the following
as the offset of the noise, and the part of the noise due to its intrinsic randomness, hereafter called fluctuations. According
to this splitting, we consider three types of noise models: (i) square-integrable offset and uniformly bounded conditional
variance of the fluctuations with respect to the sampling measure, (ii) square-integrable offset and bounded fluctuations,
(iii) bounded offset and fluctuations. Using arguments coming from the theory of large deviations [8,22], we prove in
Theorem9aprobabilistic bound for the fluctuation term in the discrete least-square projection, i.e. taking out the effect of the
offset. Afterwards, exploiting Theorem 9, for each one of the aforementioned noise models we prove convergence estimates
in probability for the discrete least-square projection error when a specific condition is satisfied between the number of
pointwise evaluations and the dimension of the underlying approximation space. The derived convergence estimates relate
the L2 approximation error of the discrete least-squares approximation with the best approximation error measured either
in the L2 norm or in the L∞ norm. These probability estimates do not require the use of any truncation operator. Moreover,
we prove a convergence estimate in expectation with the unbounded noise model, that generalizes a result previously
given in [5] to the case of nonzero offset. Our convergence estimates, both in probability and in expectation, separate the
contribution to the error due to the best approximation error on a given approximation space and the contribution due to
the presence of noise, similarly to the so-called bias–variance trade off, see e.g. [6,17].

Finallywe apply our results to the particular setting ofmultivariate polynomial approximation spaces,which is a provably
effective choice in many situations where a smooth dependence on many parameters needs to be approximated. Examples
of such a situation arise when approximating the parameter-to-solution map of many types of PDEs with stochastic data,
see e.g. the monographs [9,11] or the works [4,12,15] focused on discrete least squares. In [5,16,4], discrete least squares
on multivariate polynomial spaces with evaluations at random points have been analyzed with the uniform and arcsine
density: in any dimension and with polynomial spaces associated with downward closed multi-index sets, stability and
accuracy have been proven, provided a specific proportionality relation is satisfied between the number of evaluations and
the dimension of the polynomial approximation space. Then the analysis has been extended to any density in the beta family,
using the results proven in [13].

In [14] it has been proven that, in the case of uniform density and with anisotropic tensor product polynomial spaces in
any dimension, the random point set can be replaced by suitable low-discrepancy point sets, leading to analogous results
concerning stability and accuracy of discrete least squares in the noiseless case. These results can be combined with those
of the present paper, to provide convergence estimates for discrete least squares with noisy evaluations at low-discrepancy
point sets, rather than random point sets.

Another analysis of discrete least squares with deterministic points has been proposed in [23], with points that are
asymptotically distributed according to the arcsine density.

The outline of the paper is the following. In Section 2 we introduce the discrete least-squares approximation, the
observation models, the assumptions on the noise and the noise models. In Section 2.1 we briefly present the algebraic
formulation of discrete least squares and in Section 2.2 we recall the results achieved in [5]. In Section 3 we present our
estimates in expectation (Section 3.1) and in probability (Section 3.2). Several intermediate results used in the proofs of these
estimates have been collected in Section 5 where, in particular, we derive an estimate for the noise term using arguments
from the theory of large deviations. In Section 4 we apply our convergence estimates in the noisy case to the setting of
polynomial approximation. Finally in Section 6 we draw some conclusions.



Download English Version:

https://daneshyari.com/en/article/1145354

Download Persian Version:

https://daneshyari.com/article/1145354

Daneshyari.com

https://daneshyari.com/en/article/1145354
https://daneshyari.com/article/1145354
https://daneshyari.com

