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a b s t r a c t

Simultaneous predictive densities for independent Poisson observables are investigated.
The observed data and the target variables to be predicted are independently distributed
according to different Poisson distributions parametrized by the same parameter. The per-
formance of predictive densities is evaluated by the Kullback–Leibler divergence. A class
of prior distributions depending on the objective of prediction is introduced. A Bayesian
predictive density based on a prior in this class dominates the Bayesian predictive density
based on the Jeffreys prior.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that xi (i = 1, . . . , d) are independently distributed according to the Poisson distribution with mean riλi and
that yi (i = 1, . . . , d) are independently distributed according to the Poisson distribution with mean siλi. Then,

p(x | λ) =

d
i=1

(riλi)
xi

xi!
e−riλi , (1)

and

p(y | λ) =

d
i=1

(siλi)
yi

yi!
e−siλi , (2)

where x = (x1, . . . , xd) and y = (y1, . . . , yd). Here, λ := (λ1, . . . , λd) is the unknown parameter, and r = (r1, . . . , rd) and
s = (s1, . . . , sd) are known positive constants. The objective is to construct a predictive density p̂(y; x) for y by using x.

For example, suppose that a shop has a purchase history data set for d customers. The time lengths ri (i = 1, . . . , d) of the
purchase history data are different depending on the customers i = 1, . . . , d. The purchasing processes for the customers
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are d independent Poisson processes with intensities λi (i = 1, . . . , d). If the shop wants to predict the purchases of the
customers in future time intervals with lengths si (i = 1, . . . , d), then the problem can be formulated as above.

The performance of p̂(y; x) is evaluated by the Kullback–Leibler divergence

D(p(y | λ), p̂(y; x)) :=


y

p(y | λ) log
p(y | λ)

p̂(y; x)

from the true density p(y | λ) to the predictive density p̂(y; x). The risk function is given by

E

D(p(y | λ), p̂(y; x))

 λ =


x


y

p(x | λ)p(y | λ) log
p(y | λ)

p̂(y; x)
.

It is widely recognized that Bayesian predictive densities

pπ (y | x) :=


p(y | λ)p(x | λ)π(λ)dλ

p(x | λ)π(λ)dλ
,

where dλ = dλ1 · · · dλd, constructed by using a priorπ performbetter than plug-in densities p(y | λ̂) constructed by replac-
ing the unknown parameter λ by an estimate λ̂(x). The choice of π becomes important to construct a Bayesian predictive
density.

The Jeffreys prior

πJ(λ)dλ1 · · · dλd ∝ λ
−

1
2

1 · · · λ
−

1
2

d dλ1 · · · dλd (3)

for p(x | λ) coincides with the Jeffreys prior for p(y | λ) and the volume element prior πP(λ) with respect to the predictive
metric discussed in Section 4. A natural class of priors including the Jeffreys prior is

πβ(λ)dλ1 · · · dλd := λ
β1−1
1 · · · λ

βd−1
d dλ1 · · · dλd,

where βi > 0 (i = 1, . . . , d).
We introduce a class of priors defined by

πα,β,γ (λ)dλ1 · · · dλd :=
λ

β1−1
1 · · · λ

βd−1
d

(λ1/γ1 + · · · + λd/γd)α
dλ1 · · · dλd,

where 0 ≤ α ≤ :=


i βi, βi > 0, and γi > 0 (i = 1, . . . , d). In the following, a dot as a subscript indicates summation
over the corresponding index. Note that πα,β,γ ∝ πα,β,cγ , where c > 0 and cγ = (cγ1, . . . , cγd). The prior πα,β,γ does not
depend on γ := (γ1, . . . , γd) if α = 0. If α > 0, πα,β,γ puts more weight on parameter values close to 0 than πβ does. In
this sense, πα,β,γ with α > 0 is a shrinkage prior.

There have been several studies for the simple setting r1 = r2 = · · · = rd and s1 = s2 = · · · = sd. Decision theoretic
properties of linear estimators under the Kullback–Leibler loss is studied by Ghosh and Yang [5]. The theory for Bayesian
predictive densities for the Poissonmodel under the Kullback–Leibler loss is a generalization of that for Bayesian estimators
under the Kullback–Leibler loss. A class of priors πα,β := πα,β,γ with γ1 = · · · = γd = 1 is introduced in [8]. It is shown
that the risk of the Bayesian predictive density based on πα̃,β with α̃ := − 1 is smaller than the risk of that based on πβ

if > 1. For example, if d ≥ 3, there exists a Bayesian predictive density that dominates the Bayesian predictive density
pJ(y | x) based on the Jeffreys prior because = d/2 > 1. Here, pπ (y | x) is said to dominate pJ(y | x) if the risk of pπ (y | x)
is not greater than that of pJ(y | x) for all λ and the strict inequality holds for at least one point λ in the parameter space.

Bayesian predictive densities based on shrinkage priors are discussed by Komaki [7] and George et al. [2] for normal
models. See also [3] for recent developments of the theory of predictive densities. In practical applications, it often occurs that
observed data x and the target variable y to be predicted have different distributions parametrized by the same parameter.
Regressionmodels with the same parameter and different explanatory variable values are a typical example. Kobayashi and
Komaki [6] and George and Xu [4] showed that shrinkage priors are useful for constructing Bayesian predictive densities for
normal linear regression models. Komaki [10] has studied asymptotic theory for general models other than normal models
when x(i) (i = 1, . . . ,N) and y have different distributions p(x | θ) and p(y | θ), respectively, with the same parameter
θ . However, there has been few studies on nonasymptotic theories of Bayesian predictive densities for non-normal models
when the distributions of x and y are different.

In the present paper, we develop finite sample theory for prediction when the data x and the target variable y have
different Poisson distributions (1) and (2), respectively, with the same parameter λ. The proposed prior depends not only
on r corresponding to the data distribution but also on s corresponding to the objective of prediction. Thus, we need to
abandon the context invariance of the prior, see e.g. [1]. The Bayesian predictive densities studied in the present paper
are not represented by using widely known functions such as gamma or beta functions, contrary to the simple setting
r1 = · · · = rd and s1 = · · · = sd [8]. However, the predictive densities are represented by introducing a generalization
of the Beta function, and the results are proved analytically.
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