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a b s t r a c t

In this article, we consider quantile regression method for partially linear varying coef-
ficient models for semiparametric time series modeling. We propose estimation methods
based on general series estimation.We establish convergence rates of the estimator and the
root-n asymptotic normality of the finite-dimensional parameter in the linear part.We fur-
ther propose penalization-based method for automatically specifying the linear part of the
model as well as performing variable selection, and show the model selection consistency
of this approach. We illustrate the performance of estimates using a simulation study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Various nonparametric and semiparametric models have been developed for dynamic time series data analysis. One
popular semiparametric model that represents a good balance between flexibility and parsimony is the varying coefficients
model, which has found many applications in finance, economics, medicine and biology [16,1,34,12,13,29]. These models
extend the classical linear models by allowing the coefficients to depend smoothly on an index variable. Many estimation
procedures have been proposed previously for independent data [11,12,6,18,19,7]. Cai et al. [2] considered estimation based
on kernel methods for time series data, and Cai and Li [3] further extended this to panel data model.

The parametric quantile regression introduced by Koenker and Bassett [22] has beenwell developed in the econometrics
and statistics literature. When the distribution of the errors in the model is heavy tailed or the data contain some outliers, it
is well known that median regression, a special case of quantile regression, is more robust than mean regression. More
importantly, it can be used to obtain a large collection of conditional quantiles to characterize the entire conditional
distribution. To construct a richer class of regressionmodels capturing flexibly the relationships between the covariates and
the response distribution, nonparametric quantile estimation has been studied in [15,35]. For varying coefficient models,
Kim [21] studied quantile regression for independent data using splines, and Cai and Xu [5] used local polynomial estimation
method for time series data.

The varying coefficient models, although more parsimonious than the fully nonparametric models, can still overfit the
data when some covariate effects are actually linear, which motivated the partially linear varying coefficient model (PLVC)
studied in [32] for independent data using splines and Cai and Xiao [4] for dynamic time series data using local polynomials.

The present article will develop theory and methodology for analyzing stationary time series data in the quantile PLVC
model using general series estimation methods. Series estimation methods provide an alternative to local polynomial
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estimation method. The comparative advantages of series estimation methods were carefully documented in [23], among
which the most notable is the computational convenience, although it is not our main intention here to promote series
estimation methods. The disadvantage is that the exact bias term for the nonparametric part is not known in the literature
making demonstration of asymptotic normality for the nonparametric part difficult. We here use series estimation method
mainly due to personal taste, and also due to that asymptotic properties of semiparametric PLVC quantile regression on time
series data using thismethod has not been treated, which ismuchmore complicated than the independent case (asymptotic
properties using the local polynomial estimation methods have been established in [4]).

Moving one step further, we also consider penalization-based variable selection for PLVC quantile regression, which has
not been considered in the context of time series data. Variable selection for some common time series models, for example
for autoregressivemodels, has the favorable effect of determining the order of themodel automatically, and simultaneously
with estimation. Since there is an enormous literature onpenalization-based variable selection,we just list a small number of
them here including [26,8,9,27,30,31,24,17], which considered both parametric and semiparametric models, with apologies
to those whose works are missed.

For the PLVC model, a plaguing problem is to determine which covariates have linear effect for correct model specifica-
tion. Motivated by Lian [25] which studied partially linear additive quantile regression for independent data using splines,
we consider the problem of automatic partially linear structure discovery for dynamic varying coefficient time series quan-
tile regression. We demonstrate that we can still harvest the advantages of the more efficient parametric estimation for
some covariates (if their effects are indeed linear) without having to specify the linear part before estimation. Instead, the
linear part will emerge automatically as a by-product of statistical estimation. In the framework of quantile regression, the
type of effect for a specific covariate can vary at different quantiles. That is, some covariate might have nonlinear effect at
one quantile level but linear effect at another level.

The rest of the article is organized as follows. In Section 2, we formally present the partially linear functional coefficient
model, the estimation procedure, and statistical properties. In Section 3, we consider the case where the linear part is not
specified a priori and use penalized estimation to identify themodel structure.We show the oracle property of the penalized
estimator. In other words, this method estimates the irrelevant coefficients as zero, and the non-varying coefficients as
nonzero constant, with probability approaching one. Convergence rates of the nonparametric part is also established. In
Section 4, we briefly discuss computational aspects and present some numerical examples for finite sample performance.
Section 5 presents some concluding remarks. All technical proofs are relegated to the Appendix.

2. Spline estimation of partially linear functional coefficient models

Let (Xi, Zi,Ui, Yi), i = 1, . . . , n be jointly stationary processes. At a given quantile τ ∈ (0, 1), we assume the PLVC
quantile regression model

Yi = XT
i βτ (Ui)+ ZT

i ατ + ϵτ i,

where Xi = (Xi1, . . . , Xip1)
T is p1-dimensional, Zi = (Zi1, . . . , Zip2)

T is p2-dimensional, P(ϵτ i ≤ 0|Zi,Xi,Ui) = τ , and Ui
is called the smoothing variable or the index variable, which might or might not be one component of (Xi, Zi). We only
consider one-dimensional smoothing variable Ui ∈ R. Although multi-dimensional Ui can possibly be accommodated, in
practice this is rare due to the worry of curse of dimensionality in high dimensional nonparametric regression. We assume
the smoothing variable Ui takes values in a bounded interval [−T , T ], which is typical in series estimation methods. Since
we consider a fixed quantile level, in the following the subscript τ will be omitted from the notations.

To compute the quantile regression estimator, we use a linear combination of known basis functions (such as power
series, splines, Fourier series, wavelets, etc.), with the property that the linear combination can approximate the coefficients
βj(u), j = 1 . . . , p1 well (with more rigorous assumptions presented below). Without loss of generality, we assume that the
constant function is in the space spanned by the basis functions. For simplicity of notation, we assume that all p1 coefficients
are approximated by the same set of basis functions. Theoretically it is straightforward to extend to the more general case
where a set of p1 different bases are used. However, in practice this is rarely done due to the difficulty of choosing multiple
bases in a principled way. Let pK (u) = (pK1 (u), . . . , p

K
K (u))

T be the sequence of basis functions and the coefficients are
approximated by βj ≈ γT

j p
K with γ j = (γj1, . . . , γjK )

T.
To estimate α and γ = (γT

1, . . . , γ
T
p1)

T, we minimize

Q (γ,α) :=

n
i=1

ρ(Yi − pK (Xi,Ui)
Tγ − ZT

i α), (1)

where ρ(x) = x(τ − I{x < 0}) is the check loss and pK (Xi,Ui) = (Xi1pK (Ui)
T, . . . , Xip1p

K (Ui)
T)T. Note this is a one-step

estimation procedure, as opposed to the two-step procedure used in [4] in order to achieve root-n consistency of the linear
part.

Denoting the minimizer by (γ̂, α̂), we estimate βj(u) by

β̂j(u) =

K
k=1

γ̂jkpKk (u).
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