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a b s t r a c t

In this paper, we investigate the model checking problem of a partially linear model when
some covariates are measured with error and some auxiliary variables are supplied. The
often-used assumptions on the measurement error, such as a known error variance or a
known distribution of the error variable, are not required. Also repeatedmeasurements are
not needed. Instead, a nonparametric calibration method is applied to deal with the mea-
surement error. An estimating method for the null hypothetical model is proposed and the
asymptotic properties of the proposed estimators are established. A testing method based
on a residual-marked empirical process is then developed to check the null hypothetical
partially linear model. The tests are shown to be consistent and can detect the alternative
hypothesis close to the null hypothesis at the rate n−r with 0 ≤ r ≤ 1/2. Simulation studies
and real data analysis are conducted to examine the finite sample behavior of the proposed
methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Measurement error data arise frequently inmany fields, such as epidemiology, sociology and biomedical sciences. To deal
with the measurement error, with some assumptions, for example, the error variables are normally distributed, the error
variance has a known form or the repeated measurements are collected, the adverse influence of measurement error can
be effectively eliminated. We can refer to Liang et al. [9], Cui et al. [5], Ma and Carroll [11], Liang et al. [10], Carroll et al. [3]
and Pan et al. [13], where some classical results are presented. In this paper, we consider another method to deal with the
measurement error: relaxing the above assumptions on themeasurement error and assuming a supply of auxiliary variables.
We take the widely-used partially linear regression model as an example to show the implementation of this method.

A partially linear regression model has the form of

Y = X τβ + g(T ) + ε, (1.1)
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where Y is a scalar response variable, X and T are respectively p-vector and scalar covariates, β and g(·) are respectively
p-dimensional and infinite dimensional regression parameters. The random error ε satisfies E(ε|X, T ) = 0 and E(ε2

|X, T ) <
∞. Here we assume that T is scalar only for the simplicity of notation.

Assume that the covariate X is measured with error and a surrogate covariate X̃ is observed. The relationship between
X and X̃ can be described as X = E(X̃ |V ), where V is an observed d-vector of auxiliary variables. Actually, the above error
model structure is a special case of the additive error model, since X = E(X̃ |V ) implies that X̃ = X + e with E(e|V ) = 0.
This error structure was first introduced by Cai et al. [2] and was further studied by Cui et al. [5], Zhou and Liang [21], Zhao
and Xue [20] and Yang et al. [19]. Since X̃ and V are observed, the true covariate X = E(X̃ |V ) can be estimated by the local
smoothing method and then the estimation of the model parameters can be constructed for the null hypothetical partially
linear model.

We mainly consider the model checking problem of the partial linear model since a correct model specification is
fundamental and critical in statistical estimation and inference. Model checking problem with measurement error is very
challenging and only sporadic research work can be found in the literature. See Cheng [4] and Koul and Song [8], among
others. In this paper, the information of the auxiliary variablemakes themodel parameters estimable. An empirical-process-
based test statistic can be constructed based on the estimatedmodel error. Actually, for a partially linearmodel, several other
popular model checking methods, such as the local smoothing method, can also be constructed. We can refer such methods
to Fan and Li [6], Song [15], Gao and Gijbels [7], and so on. Comparatively, the proposed empirical-process-basedmethod has
the following merits: (i) The proposed test is consistent; (ii) The effect of the proposed test depends slightly on the choice
of the smoothing parameters; (iii) It can detect the local alternative models close to the null hypothetical model at the rate
n−1/2. It is well known that the rate n−1/2 is the possible fastest rate at which the lack-of-fit test can detect. More details
about empirical-process-based test can refer to Zhu and Ng [22], Sun et al. [16], Xu and Zhu [18], Ma et al. [12].

The rest of this paper is organized as follows. Section 2 proposes the estimation method for the model parameters. In
Section 3, we construct an empirical-process-based model checking method and study its asymptotic properties. Section 4
reports some results from simulation studies conducted for evaluating the proposed methods. An application to a data set
of Duchenne Muscular Dystrophy is provided in Section 5. All proofs are given in the Appendix.

2. Estimating procedure

Suppose that we have a sample (Yi, X̃i, Ti, Vi)
n
i=1 from (Y , X̃, T , V ). For model (1.1), Robinson [14] showed that

β =


E{(X − E(X |T ))(X − E(X |T ))τ }

−1
E

{X − E(X |T )}{Y − E(Y |T )}


.

Since X is not observed, we replace X by a nonparametric estimation, say γ̂n(V ), which can be defined as
n

j=1 X̃jλv(V −

Vj)/
n

j=1 λv(V − Vj) with λ(·) a kernel function, hv a bandwidth and λv(·) = 1/hd
vλ(·/hv). Then by the sampling moment

method, we have an estimator of β as follows:

β̂n =

 n
i=1

{γ̂n(Vi) − ĝ1,n(Ti)}{γ̂n(Vi) − ĝ1,n(Ti)}τ
−1 n

i=1

{γ̂n(Vi) − ĝ1,n(Ti)}{Yi − ĝ2,n(Ti)},

where ĝ1,n(t) and ĝ2,n(t) are respectively the local linear estimators of g1(t) =: E[X |T = t] and g2(t) =: E[Y |T = t], which
are defined in the following. Let ωt = diag(Kt(T1 − t), . . . , Kt(Tn − t)),

γ̂n =


γ̂n(V1)

τ

γ̂n(V2)
τ

...
γ̂n(Vn)

τ

 , Tt =


1 T1 − t
1 T2 − t
...

...
1 Tn − t

 , Ŷ =


Y1
Y2
...
Yn

 ,

where K(·) is a kernel function, ht is a bandwidth and Kt(·) = 1/htK(·/ht). By local linear regression technique, we can give
the estimator of g1(t), denoted by ĝ1,n(t), and that of its derivative g ′

1(t), denoted by ĝ ′

1,n(t), as follows:
ĝ1,n(t)τ

ĝ ′

1,n(t)
τ


= (T ′

tωtTt)−1T ′

tωt γ̂n.

Let Ij,p be the 1× p vector with the first j components ones and the remaining zeros. Then we have ĝ1,n(t)τ = Iτ1,2(T
′
tωtTt)−1

T ′
tωt γ̂n. Similarly, an estimator of g2(t) = E(Y |T = t) is given by ĝ2,n(t) = Iτ1,2(T

′
tωtTt)−1T ′

tωt Ŷ . The following theorem
summarizes the asymptotic expansion of β̂n with the proof given in the Appendix.

Theorem 1. Under the conditions (C.1)–(C.6) in the Appendix, we have that under model (1.1),

n1/2(β̂n − β) = n−1/2Σ−1
0

n
j=1


(X̃j − Xj)E(εj|Vj) + {Xj − E(Xj|Tj)}εj + E{Xj − E(Xj|Tj)|Vj}(Xj − X̃j)

τβ


+ op(1), (2.1)
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