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a b s t r a c t

Wedevelop a generalized additivemodeling framework for taking into account the effect of
predictors on the dependence structure between two variables. We consider dependence
or concordance measures that are solely functions of the copula, because they contain
no marginal information: rank correlation coefficients or tail-dependence coefficients
represent natural choices. We propose a maximum penalized log-likelihood estimator,
derive its

√
n-consistency and asymptotic normality, discuss details of the estimation

procedure and the selection of the smoothing parameter. Finally, we present the results
from a simulation study and apply the new methodology to a real dataset. Using intraday
asset returns, we show that an intraday dependence pattern, due to the cyclical nature of
market activity, is shaped similarly to the individual conditional second moments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Generalized additive models [22] are a natural extension of linear and generalized linear models. Built on roughness
penalty smoothing, a generalized additive model (GAM) is a flexible data analysis tool in a traditionally univariate context.
Consider the following research questions, however:

• There are relationships between a population’s life expectancy and the country’s GDP, aswell as betweenmale and female
life expectancy in a given country. Can we measure the effect of the GDP on the later while controlling for the former?

• Cellular biologists study how predictor genes coordinate the expression of target genes. Can we further quantify how the
association between the targets depends on the predictors?

• Volatilities of intraday asset returns show periodicities due to the cyclical nature of market activity and macroeconomic
news releases. Is this also true for their dependence structure?

To obtain a statistically sound answer, we need to extend GAMs to the dependence structure between random variables.
In this context, we distinguish between two closely related concepts, namely dependence and concordance. For instance,
Pearson’s correlation is often used as ameasure of concordance and its absolute value as ameasure of dependence. It detects
linear relationships between variables, but it depends on theirmargins and lacks robustness to outliers. Borrowing from [27],
two desirable properties of a dependence (respectively concordance) measure are:
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• invariance to monotone increasing transformations of the margins (up to a sign change if one of the transformations is
monotone decreasing);

• the existence and uniqueness of a minimum (a zero), which is attained whenever the variables are independent.

Essentially, the first property states that such a measure should depend on the copula only. This is the case for rank
correlation coefficients (concordance) or tail-dependence coefficients (dependence). Furthermore, convenient mappings
between such measures and the parameters of common copulas often exist. As such, many conditional dependence and
concordance measures, although unobservable, can be modeled directly.

While copulas arewell studied [24,27], their formal developments to conditional distributions have rather recent origins.
Patton [30] first extended the standard theory by imposing a mutual conditioning algebra for each margin and the copula.
Fermanian and Wegkamp [13] relax this mutual algebra requirement and develop the concept of pseudo-copulas under
strong mixing assumptions.

However, the investigation of modeling with the dependence structure as function of covariates has only been recently
explored. As often in statistics, it is useful to distinguish between distribution-free and parametric methods. In [17], the
authors suggest two kernel-based estimators of conditional copulas and corresponding conditional association measures.
While their estimators are useful as descriptive statistics, their framework is limited to a single covariate without formal
inference. On the parametric side, Acar et al. [2] consider a copula parameter that varies with a single covariate. The authors
estimate their model using the concept of local likelihood and further suggest a testing framework in [3]. In [10], the authors
develop Bayesian inference tools for a bivariate copula, conditional on a single covariate, coupling mixed or continuous
outcomes. It is extended to multiple covariates in the continuous case by Sabeti et al. [32].

Compared to existing methods, the framework that we develop in this paper benefits directly from the complete GAM
toolbox. We consider models where the dependence structure varies with an arbitrary set of covariates in a parametric,
nonparametric or semiparametric way.

The structure of the paper is as follows: In Section 2, we develop the theoretical framework of generalized additive
models for the dependence structure.Wepresent the generalmodel for the conditional dependence or concordancemeasure
in Section 2.1. In Section 2.2, we state some asymptotic properties of the penalized log-likelihood estimator, namely its√
n-consistency and asymptotic normality, assuming either known or unknown margins. In Section 2.3, we recast the

penalized likelihood estimation as an iteratively reweighted generalized ridge regression. We close our theoretical
considerations in Section 2.4, by discussing a measure of the penalized model’s effective dimension and the selection of
smoothing parameters. In Section 3, we present a simulation study and an application using a real dataset. We analyze the
results of the simulation study in Section 3.1. We study the cross-sectional dynamics of intraday asset returns in Section 3.2.
We conclude and suggest directions for further work in Section 4.

2. Generalized additive models for conditional dependence structures

In this section, we detail the approach to model the dependence structure between two random variables as a function
of an arbitrary set of exogenous predictors (covariates).

To set up the notations, we use uppercase (boldface) letters for scalar random variables (random vectors and matrices)
and lowercase (boldface) letters for scalars (vectors andmatrices). We differentiate scalar functions with identical names by
their arguments, and similarly for boldfaced vectors andmatrices functions.We use vectors columns, ∥·∥

2 for the Euclidean
norm, subscripts for the elements of a given matrix or vector and superscripts for either independent copies of a random
quantity or realized observations. We denote real intervals (or Cartesian products thereof) by double-struck capital letters,
except for the usual N, Z, R, etc. For k, l ∈ N and W ⊆ Rl, we use Ck(W) for the space of functions with k continuous (partial)
derivatives on the interior of W.

Let Y ∈ Y ⊆ R2 be the random vector (responses) of interest, X ∈ X ⊆ Rq be a vector of q covariates (predictors). For
y ∈ Y, x ∈ X and i ∈ {1, 2}, we denote by FYi|X(yi | x) = P(Yi ≤ yi | X = x) the conditional margins and by U the random
vector of conditional probability integral transformswithUi = FYi|X(Yi | X). Assume further that all variables are continuous
and have strictly positive densities. In what follows, we rely on the conditional equivalent to Sklar’s theorem [33,30]: for all
x ∈ X, there exists a unique conditional copula C(· | x) which is the conditional distribution of U | X = x. In other words,
for u ∈ [0, 1]2, we have that

C(u | x) = P(U ≤ u | X = x)

= FY|X


F−1
Y1|X(u1 | x), F−1

Y2|X(u2 | x) | x

. (1)

Remark. In [30], the conditioning vector is the same for the twomargins and copula. In time series, conditioning algebras are
usually augmented with past observations. Therefore, the concept of conditional copulas can be rather restrictive (see [13]).
However, conditional copulas and exogeneity of the predictors are sufficient to develop a regression-like theory for the
dependence structure.
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