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h i g h l i g h t s

• Asynchronously sampled data can be endowed with any copula by a reordering technique.
• Popular since 1982, this method gets a rigorous convergence proof in the present paper.
• Related estimates of sum distribution functions converge uniformly with rate OP(1/

√
n).

• The underlying problem is not covered by classic empirical process results.
• CLT fails in this case. This issue affects many real-world applications.
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a b s t r a c t

This paper studies convergence properties of multivariate distributions constructed by
endowing empirical margins with a copula. This setting includes Latin Hypercube Sam-
pling with dependence, also known as the Iman–Conover method. The primary question
addressed here is the convergence of the component sum, which is relevant to risk ag-
gregation in insurance and finance. This paper shows that a CLT for the aggregated risk
distribution is not available, so that the underlying mathematical problem goes beyond
classic functional CLTs for empirical copulas. This issue is relevant to Monte-Carlo based
risk aggregation in all multivariate models generated by plugging empirical margins into a
copula. Instead of a functional CLT, this paper establishes strong uniform consistency of the
estimated sum distribution function and provides a sufficient criterion for the convergence
rate O(n−1/2) in probability. These convergence results hold for all copulas with bounded
densities. Examples with unbounded densities include bivariate Clayton and Gauss copu-
las. The convergence results are not specific to the component sum and hold also for any
other componentwise non-decreasing aggregation function. On the other hand, conver-
gence of estimates for the joint distribution is much easier to prove, including CLTs. Be-
yond Iman–Conover estimates, the results of this paper apply to multivariate distributions
obtained by plugging empirical margins into an exact copula or by plugging exact margins
into an empirical copula.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In various real-world applications, multivariate stochastic models are constructed upon empirical marginal data and an
assumption on the dependence structure between themargins. This dependence assumption is often formulated in terms of
copulas. The major reason for this set-up is the lack of multivariate data sets, as it is often the case in insurance and finance.
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This approach may appear artificial from the statistical point of view, but it arises naturally in the context of stress testing.
In addition to finance and insurance, relevant application areas include engineering and environmental studies. Sometimes
the marginal data is not even based on observations, but is generated by a univariate model that is considered reliable.
Many of these models are so complex that the resulting distributions cannot be expressed analytically. In such cases exact
marginal distributions are replaced by empirical distributions of simulated univariate samples. These empirical margins are
endowedwith some dependence structure to obtain amultivariate distribution. The computation of aggregated risk or other
characteristics of this multivariate model is typically based on Monte-Carlo techniques.

Iman–Conover: dependence ‘‘injection’’ by sample reordering

Related methods include generation of synthetic multivariate samples from univariate data sets. Whilst the margins of
such a synthetic sample accord with the univariate data, its dependence structure is modified to fit the application’s needs.
Themost basic example is the classic Latin Hypercube Samplingmethod, whichmimics independentmargins. It is a popular
tool for removing spurious correlations frommultivariate data sets. This method is also applied to variance reduction in the
simulation of independent random variables (cf. [15,23,18,12]). Similar applications to dependent random variables include
variance reduction in Monte-Carlo methods [19] and in copula estimation [10].

An extension of Latin Hypercube Sampling that brings dependence into the samples was proposed by Iman and
Conover [13]. The original description of the Iman–Conover method uses random reordering of marginal samples, and the
intention there was to control the rank correlations in the synthetic multivariate sample. The reordering is performed ac-
cording to the vectors of marginal ranks in an i.i.d. sample of some multivariate distribution, say, H , with continuous mar-
gins. Thus rank correlations ofH are ‘‘injected’’ into the synthetic sample. This procedure is equivalent to plugging empirical
margins (obtained from asynchronous observations) into the rank based empirical copula of a sample of H [2]. Moreover, it
turned out that the Iman–Conovermethod allows to introduce not only the rank correlations ofH into the synthetic samples,
but the entire copula ofH (cf. [2,16]). In somewhatweaker sense, these results are related to the approximation of stochastic
dependence by deterministic functions and to the pioneering result by Kimeldorf and Sampson [14]. Further developments
in that area include measure preserving transformations [26] and shuffles of min [7]. In statistical optimization, reordering
techniques were also used by Rüschendorf [21]. A very recent, related application in quantitative riskmanagement is a rear-
rangement algorithm that computes worst-case bounds for the aggregated loss quantiles in a portfolio with given marginal
distributions (cf. [8], and references therein).

Using explicit reorderings of univariate marginal samples, the Iman–Conover method has a unique algorithmic tractabil-
ity. It is implemented in various software packages, and it serves as a standard tool in dependencemodelling and uncertainty
analysis. The reordering algorithm allows even to construct synthetic samples with hierarchical dependence structures that
meet the needs of risk aggregation in insurance and reinsurance companies [2]. The distribution of the aggregated risk is esti-
mated by the empirical distribution of the component sumsX (k)

1 +· · ·+
X (k)
d of the synthetic samplesX (k)

= (X (k)
1 , . . . ,X (k)

d )

for k = 1, . . . , n. This Monte-Carlo approach has computational advantages. The resulting convergence rate of n−1/2 (or
even faster with Quasi-Monte-Carlo using special sequences) allows to outperform explicit calculation of sum distributions
already for moderate dimensions d ≥ 4 (cf. [1]).

Challenge and contribution: convergence proofs

Despite its popularity, some applications of the Iman–Conover method have been justified by simulations rather than
by mathematical proofs. The original publication [13] derives its conclusions from promising simulation results for the
distribution of the following function of a 4-dimensional randomvector: f (X1, . . . , X4) = X1+X2(X3−log |X1|)+exp(X4/4).
Yet a rigorous proof is still missing. The present paper provides a convergence proof for Iman–Conover estimates of the
component sum distribution. It also includes a proof sketch for the much simpler case of the estimated joint distribution.
Both problems have been open until now.

The solutions given in this paper are derived from the empirical process theory as presented in [24]. Under appropriate
regularity assumptions, Iman–Conover estimates of the sum distribution are strongly uniformly consistent with conver-
gence rate OP(n−1/2) (see Theorems 4.1 and 4.2). The convergence of Iman–Conover estimates for the joint distribution is
discussed in cf. Remark 4.8. All these findings are not specific to the component sum and extend immediately to all com-
ponentwise non-decreasing functions (see Corollary 4.10). Moreover, Theorems 4.1 and 4.2 also cover the convergence of
aggregated risk distributions obtained by Monte-Carlo sampling of a multivariate model constructed by plugging empirical
margins into a copula (see Remark 4.9). In fact, both sampling methods (reordering by Iman–Conover and classic top-down
sampling with empirical margins instead of the exact ones) lead to the same mathematical problem. This is discussed in
Remark 3.2(d).

The regularity assumptions used here to establish the OP(n−1/2) convergence rate for Iman–Conover estimates of sum
distributions are satisfied for all copulas with bounded densities. This case includes the independence copula in arbitrary
dimension d ≥ 2. The assumptions are also satisfied for all bivariate Clayton copulas and for bivariate Gauss copulas with
correlation parameter ρ ≥ 0. The convergence rate for ρ < 0 is, if at all, only slightly weaker. The best bound that is
currently available for ρ < 0 is OP(n−1/2

√
log n).
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