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a b s t r a c t

In factor copula models for multivariate data, dependence is explained via one or several
common factors. These models are flexible in handling tail dependence and asymmetry
with parsimonious dependence structures. We propose two structured factor copula
models for the case where variables can be split into non-overlapping groups such that
there is homogeneous dependence within each group. A typical example of such variables
occurs for stock returns from different sectors. The structured models inherit most of
dependence properties derived for common factor copula models. With appropriate
numerical methods, efficient estimation of dependence parameters is possible for data
sets with over 100 variables. We apply the structured factor copula models to analyze a
financial data set, and compare with other copula models for tail inference. Using model-
based interval estimates, we find that some commonly used riskmeasuresmay not be well
discriminated by copula models, but tail-weighted dependencemeasures can discriminate
copula models with different dependence and tail properties.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modeling high-dimensional data is a challenging task requiring flexible and tractable models. Models based on multi-
variate normality or Gaussianity are widely used in different applications due to their simplicity and tractability. In these
models, special correlation structures are used to reduce the number of dependence parameters to a linear function of the
dimension. A typical example is a Gaussian factormodel where one or several common factors define the dependence struc-
ture for all of the variables. Factor copula models proposed in Krupskii and Joe [19] are extensions of the Gaussian factor
model allowing greater flexibility when modeling non-Gaussian dependence. In particular, strong tail dependence and tail
asymmetry can be accommodated. In data sets with a large number of variables, data can come from different sources or be
clustered in different groups, for example, stock returns from different sectors or grouped item response data in psychomet-
rics; thus dependence within each group and among different groups can be qualitatively different, and structured factor
models can make use of the group information.

In psychometrics, sometimes a bi-factor correlation structure is used when variables or items can be split into non-
overlapping groups; see for example Gibbons and Hedeker [10] and Holzinger and Swineford [12]. In a Gaussian bi-factor
model, there is one common Gaussian factor which defines dependence between different groups, and one or several
independent group-specific Gaussian factors which define dependence within each group. An alternative way to model
dependence for grouped data is a nested model where the dependence in groups is modeled via dependent group-specific
factors and the observed variables are assumed to be conditionally independent given these group-specific factors. The

∗ Corresponding author.
E-mail address: KrupskiiPV@yandex.ru (P. Krupskii).

http://dx.doi.org/10.1016/j.jmva.2014.11.002
0047-259X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2014.11.002
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2014.11.002&domain=pdf
mailto:KrupskiiPV@yandex.ru
http://dx.doi.org/10.1016/j.jmva.2014.11.002


54 P. Krupskii, H. Joe / Journal of Multivariate Analysis 138 (2015) 53–73

nested model is similar to Gaussian models with multilevel covariance structure; see Muthen [25]. Despite the simplicity,
these two models have the same drawbacks as a common Gaussian factor model—they do not account for tail asymmetry
and tail dependence.

In this paper,we propose copula extensions for bi-factor andnestedGaussianmodels. The extensions are called structured
factor copula models. The proposed models contain 1- and 2-factor copula models introduced in Krupskii and Joe [19] as
special cases, while allowing flexible dependence structure both for within group and between group dependence. As a
result, the models can be suitable for modeling high-dimensional data sets consisting of several groups of variables with
homogeneous dependence in each group.

The proposed multivariate copula models are built from a sequence of bivariate copulas in a similar way to vine copulas.
Let FX be the multivariate cumulative distribution function (cdf) of a random d-dimensional vector X = (X1, . . . , Xd),
and let FXj be the cdf of Xj for j = 1, . . . , d. The copula CX, corresponding to FX, is a multivariate uniform cdf such that
FX(x1, . . . , xd) = CX(FX1(x1), . . . , FXd(xd)). By Sklar [30], CX is unique if FX is continuous. Copula functions allow for different
types of dependence structure and are popular for modeling non-Gaussian dependence, including stock returns, insurance
and hydrology data; see for example see Patton [29], McNeil et al. [23], Salvadori et al. [24] and others.

The proposed structured copula models are special cases of truncated-vine copula models with latent variables. In a vine
model, bivariate linking copulas are applied to conditional cdfs to sequentially construct a multivariate distribution. The
resulting vinemodel or pair-copula construction allows great flexibility inmodeling different types of dependence structure
by choosing appropriate linking copulas; seeKurowicka and Joe [20] andBrechmannandCzado [5] formore details.We show
that depending on the choice of bivariate copulas in the structured copulamodels, different types of strength of dependence
in the tails can be accommodated, similar to common factor copula models.

For a large number of variables which divide naturally into non-overlapping groups, it could be convenient to first
separately model each group of variables followed by a method to combine the smaller models into a bigger model. Our
structured copula models are one way to do this. The grouped t-copula of Demarta and McNeil [7] can handle groups
but can only accommodate reflection symmetry. Another approach is hierarchical Kendall copulas in Brechmann [4]; it
makes use of conditional independence given some group aggregation variables. Kendall functions only have simple form for
exchangeable Archimedean copulas, so that hierarchical Kendall copulas are only convenient for exchangeable dependence
within groups. Also nested Archimedean copulas (Section 4.1 of Joe [15]) are too parsimonious and have the property of
exchangeable dependence within groups.

The details in this paper are given for continuous response variables, but the structured copula models can also be
developed for discrete ordinal variables or mixed discrete/continuous variables. Factor copula models for item response are
studied in Nikoloulopoulos and Joe [27], and if the items can be classified into non-overlapping groups, then the bi-factor
or nested factor copula models are candidates when there is tail asymmetry or tail dependence.

The rest of the paper is organized as follows. In Section 2 we define bi-factor and nested copula models including a
special case of Gaussian copulas, and compare the properties of these models with those of 1- and 2-factor copula models in
Section 3. Section 4 has details on numerical maximum likelihood with a modified Newton–Raphson algorithm. Section 5
has a resampling method to obtain model-based interval estimates of the portfolio risk measures of Value-at-Risk and
conditional tail expectation. In Section 6, we apply different copula–GARCH models to a financial data set and compare
estimates of the Value-at-Risk, conditional tail expectations as well as some other tail-based quantities. The results show
that structured factor copula models can parsimoniously estimate the dependence structure of the data. Value-at-Risk and
other risk measures, which are widely used in financial applications, cannot efficiently differentiate models with different
tail properties, and tail-weighted dependence measures are a better match to the fit of copula models based on the Akaike
information criterion. Section 7 concludes with a discussion of future research.

2. Structured factor copula models

Common factormodels assume that d observed variables are conditionally independent given 1 ≤ p ≪ d latent variables
that affect each observed variables; for identifiability, the latent variables are assumed to be independent. Structured factor
models assume that there is structure to the observed variables and each latent variable is linked to a subset of the observed
variables. For Gaussian structured factor models, this corresponds to many structured zeros in the matrix of loadings; in
this case, with fewer parameters in the loading matrix compared with the common factor model, and the p latent variables
could be dependent, as in the oblique factor model of Harris and Kaiser [11] and McDonald [22]. With a large d, structured
Gaussian factor models are also parsimonious models to parameterize the correlation matrix in O(d) parameters (instead
of d(d − 1)/2 parameters). The main goal of this section is to present the copula version of two Gaussian structured factor
models; for the extension, the parameters of the Gaussian structured factormodels are converted to a set of correlations and
partial correlations that are algebraically independent and that have a truncated vine structure, and then the correlations
and partial correlations are replaced by bivariate copulas. Similar copula extensions exist for other structured factormodels.

A specific case of structured factor models occurs when variables can be divided into non-overlapping groups. Assume
that we have G groups of variables and there are dg variables in the gth group, g = 1, . . . ,G. LetUij ∼ U(0, 1), i = 1, . . . , dg ,
and suppose variablesU1g , . . . ,Udg g belong to the gth group. Denote the joint cdf ofU = (U11, . . . ,Ud11, . . . ,U1G, . . . ,UdGG)

by CU . Let d =
G

g=1 dg be the total number of variables.
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