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a b s t r a c t

A notion of higher order tail densities for copulas is introduced using multivariate regular
variation of copula densities, and densities of multivariate extremes with various margins
can then be studied in a unified fashion. We show that the tail of a multivariate density
can be decomposed into the tail density of the underlying copula, coupled with marginal
tail transforms of the three types: Fréchet, Gumbel, and Weibull types. We also derive the
relation between the tail density and tail order functions of a copula in the context of hidden
regular variation. Some illustrative examples are given.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To facilitate tail inference with various multivariate distributions, a better understanding of the strength of dependence
in joint lower or joint upper distribution tails is often needed. In particular, in this paper we are interested in analyzing
scale-invariant tail dependence strength of a multivariate distribution, separated from its univariate margins; that is, we
are interested in analyzing tail dependence via the copula approach.

The main purpose of this paper is to develop a general copula tail density approach, so that tail properties can be derived
directly from joint tails of multivariate densities. Most multivariate distributions are specified by densities and the tail den-
sity approach is especially tractable when amultivariate density has a simple, explicit expression, whereas its joint cumula-
tive distribution function does not have a closed form. This research ismotivated by the need to analyze the tail riskmeasures
that are often expressed in terms of tail densities of the multivariate copulas of underlying loss distributions [12,25].

Let X = (X1, . . . , Xd) be a random vector with distribution F and continuous marginal distributions F1, . . . , Fd. Let F ,
and F 1, . . . , F d denote the corresponding survival functions. Assume throughout this paper that F has a density function f .
The tail behavior of F or f is often described using the notion of multivariate regular variation [22,24], and without loss of
generality, we assume that F concentrates on Rd

+
= [0, ∞)d. A univariate Borel-measurable function V : R+ → R+ is said

to be regularly varying at ∞ with tail index ρ ∈ R, denoted by V ∈ RVρ , if V (tx)/V (t) → xρ as t → ∞ for any x > 0.
A d-dimensional density function f is said to be (multivariate) regularly varying at ∞ with a limiting function λ(·) if

lim
t→∞

f (tx)
t−dV (t)

= λ(x), x ∈ Rd
+

\ {0}, (1.1)
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for some univariate regularly varying function V ∈ RV−α where α > 0. The tail density λ(·) in (1.1) was introduced in [2],
and de Haan and Resnick proved in [3] that if furthermore (1.1) converges uniformly on the unit sphere of Rd

+
, then the

regular variation (1.1) of a density implies multivariate regular variation of its cumulative distribution function F ; i.e.,

lim
t→∞

1 − F(tx)
V (t)

=


[0,x]c

λ(v)dv, x > 0, (1.2)

where [0, x]c =
d

i=1[0, xi]
c

denotes the complement of
d

i=1[0, xi] for x = (x1, . . . , xd). Here and in the sequel, vector
addition/product and vector inequalities are operated component-wise. The fact that (1.1) implies (1.2) can be viewed as a
multivariate extension of Karamata’s theorem for univariate regular variation. In contrast to the univariate case, however,
the uniform convergence on the unit sphere of Rd

+
is needed in the multivariate case to control the function’s variation

moving from ray to ray originated from 0. There are multivariate distributions that satisfy (1.1) but not (1.2) (see [3]). The
regular variation property (1.2) is crucial in deriving multivariate extreme value distributions for random samples drawn
from distribution F [24].

The scale-invariant tail behavior of a multivariate distribution F can be studied using its marginally transformed distri-
bution F(F−1

1 (u1), . . . , F−1
d (ud)), known as the copula of F [11]. A copula is invariant under marginal increasing transforms

and thus preserves the scale-invariant dependence structure of the distribution. The strongest form of scale-invariant de-
pendence in the distribution tails is the first-order tail dependence when as u → 0+, F(F−1

1 (u), . . . , F−1
d (u)) ∼ u in the

lower tail and F(F
−1
1 (u), . . . , F

−1
d (u)) ∼ u in the upper tail, which are also studied under the notion of tail comonotonicity

in [7,8]; see [11,14,15] for more details about the first-order tail dependence that is simply referred to as tail dependence in
the literature. Here and in the sequel, for any invertible function h(·), h−1(·) denotes its inverse, and the tail equivalence of
two functions f (x) ∼ g(x) as x → a, a ∈ R, means that limx→a[f (x)/g(x)] = 1. The strength of higher order scale-invariant
tail dependence can be characterized via the lower and upper tail orders κL, κU ≥ 1 (see [10,6]) when

F(F−1
1 (u), . . . , F−1

d (u)) ∼ uκLℓL(u), u → 0+, (1.3)

in the lower tail and

F(F
−1
1 (u), . . . , F

−1
d (u)) ∼ uκU ℓU(u), u → 0+, (1.4)

in the upper tail, where ℓL(·), and ℓU(·) are slowly varying functions at 0 (i.e., ℓL(1/t), ℓU(1/t) ∈ RV0). Smaller values of κL
(κU ) indicate stronger dependence in the joint lower (upper) tail, and in contrast to the first-order tail dependence, there
can be intermediate tail dependence when the tail order is between 1 and d. The tail orders are easy to compute when the
distributions and quantile functions have closed forms [6], and it becomes difficult to compute for the distributions that are
only specified by their densities. A copula tail density approachwas developed in [18] to study the first-order scale-invariant
tail dependence of multivariate distributions with tractable densities. Furthermore, it was shown in [18] (also see [16]) that
the tail density λ(·) in the case of multivariate regular variation (1.2) can be decomposed into the copula tail density and
marginal power transforms. In this paper, we extend the tail density approach to analyze the scale-invariant tail dependence
and tail order for copulas that are specified only by their densities. Specifically, we show that the tails of variousmultivariate
densities can bewritten in terms of higher order copula tail densities andmarginal tail transforms of the three types (Fréchet,
Gumbel, andWeibull). We also show that under mild regularity conditions, regular variation of tail densities of copulas, to-
gether with regularly varying margins, imply hidden regular variation (HRV); that is, multivariate regular variation resided
within the interior of Rd

+
where the joint tail probability decays to zero faster than marginal univariate regular variation.

We introduce in Section 2 the higher order tail density of a copula and apply it to analyze the tails of multivariate
densities. We prove in Section 3 a multivariate copula version of Karamata’s theorem for the distributions with hidden
regular variation. Some remarks in Section 4 conclude the paper.

2. Tail densities of copulas

A copula C is amultivariate distributionwith uniformly distributed univariatemargins on [0, 1]. Sklar’s theorem (see, e.g.,
Section 1.6 in [11]) states that every multivariate distribution F with margins F1, . . . , Fd can be written as F(x1, . . . , xd) =

C(F1(x1), . . . , Fd(xd)) for some d-dimensional copula C . In fact, in the case of continuous univariate margins, C is unique and

C(u1, . . . , ud) = F(F−1
1 (u1), . . . , F−1

d (ud)).

Let (U1, . . . ,Ud) denote a random vector with distribution C and Ui, 1 ≤ i ≤ d, being uniformly distributed on [0, 1]. The
survival copulaC is defined as follows:C(u1, . . . , ud) = P(1 − U1 ≤ u1, . . . , 1 − Ud ≤ ud) = C(1 − u1, . . . , 1 − ud) (2.1)

whereC is the joint survival function ofC . The survival copulaC can beused to transform lower tail properties of (U1, . . . ,Ud)
into the corresponding upper tail properties of (1 − U1, . . . , 1 − Ud). Assume throughout this paper that the density c(·)
of copula C exists, and that c(·) is continuous in some small open neighborhoods of 0 and 1 = (1, . . . , 1) (i.e., ultimately
continuous at 0 and 1).
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